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Growing trees

We are interested in models of randomly growing trees,

Figure: A growing tree

For example

• Uniform random recursive trees (URRT)

• Preferential attachment model (PA)

Often-time we only observe the unlabeled, undirected structure of the graph.
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Real world examples

• Malware spreading between computers

• Political beliefs spreading in a
community

• Rumours and fake news spreading online

• Online social group growing

Figure: Taken from ”Markov-Based Malware
Propagation Modeling and Analysis in Multi-Layer
Networks”
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Our goal

Infer the history from a snapshot of the present state of the tree. It answers real life question
such as

• How did the malware that infected your company propagated in your systems?

• How did the fake news spread?

• How did Covid spread?

In mathematical term, we want to find an ordering procedure σ̂ that is label invariant.
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The URRT

A tree is grown recursively as follows
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The URRT

Figure: URRT of size 1000

6 / 19



Link to Seriation

• Inferring the position of vertices in a
random geometric graph

• Or in a graphon

• In seriation problems, the points all have
the same properties

• In our problem vertex 1 and n have very
different properties

• This changes everything, for example
what is a good error measure

Figure: Taken from ”Geometric Random Graphs on
Circles” 7 / 19



A measure of error

Using something like maxi |σ̂(i)− σ(i)| is not informative. Indeed, worst case scenario is n,
best is n/2. We use

Rα(σ̂) =
n∑

i=1

|σ̂(i)− σ(i)|
σ(i)α

.

• It takes into account the inhomogeneity in the graph

• This is the right scaling for α ≥ 1
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A lower bound

• In the URRT model, the probability of a
tree depends only on its shape

• It means that all permutation of the
vertices producing a recursive ordering
have the same probability

• We can identify vertices that no ordering
method can order better than random

• For example, any vertex arrived after
time n/2, connected to [n/2] and still a
leaf at time n
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A lower bound

Using these exchangeable vertices we prove that

For any α ≥ 0

R∗
α ≥ n2−α

65
,

where R∗
α is the minimum error over all label invariant ordering procedures.

Remark A simple argument gives R∗
α ≥ 1/2.

For 0 ≤ α < 1, any ordering procedure has R(σ̂) ⪅ n2−α
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The Jordan centrality ordering

• In a rooted tree, we can define hanging
subtrees

• We denote by (T , u)v the subtree
hanging from v in the tree rooted in u

• The Jordan centrality of u is defined by

Φ(u) = max
v∼u

|(T , u)v | .

• We order vertices by increasing value of
their Jordan centrality

• This is a label invariant procedure
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Another formulation

This method is the same as:

• Estimating the position of vertex 1 by the Jordan centroid

• Ordering vertices by the size of their hanging subtree rooted at the Jordan centroid

So a general class of algorithm could be:

• Estimate the position of vertex 1 and root the tree there (for example using Rumour
centroid)

• Order vertices by the size of their subtrees in the rooted tree
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Another formulation
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Performance guarantees

Step 1: prove that σ̂J (ordering by Jordan centrality) and σ̂′ (odering vertices by number of
descendants) have similar risks

• For all but vertices on the path {1 → center}, ϕ(u) is equal to n − 1− de(u), where
de(u) is the number of descendants of u.

• It is well known that the arrival time of the centroid is dominated by an exponential RV
(and hence the distance between vertex 1 and the center).

Rα(σ̂J)− Rα(σ̂
′) ≤ K log4(n) .
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Performance guarantees

• Even if we can not compute it in
practice, we can analyse the risk of σ̂′

• de(u) is exactly a Polya urn! So the
descendent ordering is easy to analyse.

For α ∈ [1, 2)

Rα(σ̂J) ≤ CαR
∗
α .

·
de (8 = 4

8

↳
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Remark on the limitation to α ≤ 2

A simple argument to prove Jordan can not do better:

• With probability 1/n vertex 1 is a leaf, thus ordered among the last vertices.

• So E[σ̂J(1)] ≥ log(n).

What happens when α grows:

• More emphasize is put on low index vertex.

• So the step ”estimating position of vertex 1” gets more important

• Estimating the position of vertex 1 by the Jordan center is not good enough.

• A better method is to use Rumour centrality to estimate position of vertex 1.

• PROBLEM: We still miss some steps in the analysis.
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Numerical illustration

Figure: Risk of the Jordan ordering versus the tree size in logarithmic scales, for α = 1 (left panel) and for
α = 1.5 (right panel), and for trees simulated from the URRT model. Here, we sample 20 trees for each size,
and report a boxplot with the median, first, and last quartiles, for each tree size - whiskers extend from the box
to display the full range of the data set.
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Numerical illustration

Figure: Risk versus the tree size n in logarithmic scales, for α = 1, and for trees simulated from the URRT
model. Here, we sample 20 trees for each size. We compare the Jordan (blue), degree (orange), and spectral
methods (green), and report a boxplot with the median, first, and last quartiles, for each tree size - whiskers
extend from the box to display the full range of the data set. 18 / 19



Numerical illustration

Figure: Estimated polynomial rate of growth of the risk for the Jordan and degree ordering for different value of
α.
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