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Triangulations

Consider n points in convex position in the plane, labeled {1, . . . ,n} in
cyclical order.
A triangulation of the n-gon is a maximal straightline graph on them
with no crossings.
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Triangulations

Many nice properties:

All triangulations have the same number of edges (2n − 3) and
triangles (n − 2).

They are counted by Catalan numbers.

They can all be constructed iteratively adding “ears” to a triangle.

They can be connected by flips, forming (the graph of) a
polytope (the associahedron).
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Triangulations

The 3-associahedron
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k -crossings

Definition
A k -crossing is a set of k edges in

(
[n]
2

)
that mutually cross.

Multi-triangulations

Let k and n be two integers with n ≥ 2k + 1.

Let Vn be the set of vertices of a convex n-gon.

Let En be the set of the edges of the complete graph on Vn.

Two edges [a, b] and [c, d] cross if the corresponding open segments ]a, b[ and ]c, d[ intersect.

An !-crossing is a subset of En of ! mutually intersecting edges.

A k-triangulation of the n-gon is a maximal subset of En without (k + 1)-crossing.
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F. Santos Multi-triangulations as complexes of star polygons
A 4-CROSSING

Remark: The definition is purely combinatorial. A k -crossing is a set
{{i1, j1}, . . . , {ik , jk}} ⊂

(
[n]
2

)
of k edges with

i1 < i2 < · · · ik < j1 < · · · < jk < i1 (cyclically).
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k -triangulations

A k -triangulation is a maximal graph with no (k + 1)-crossings.
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A 2-TRIANGULATION OF THE 12-GON
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k -triangulations

Two easy constructions

Start with a complete graph on 2k + 1 of the points and
iteratively add “k -ears”

• 1

•2
•3

•4
•5

•6

•7

•8
•9 •

10

•11

•12



Multitriangulations Rigidity Multitriangulations and rigidity

k -triangulations

Two easy constructions

Start with a complete graph on 2k + 1 of the points and
iteratively add “k -ears”

• 1

•2
•3

•4
•5

•6

•7

•8
•9 •

10

•11

•12



Multitriangulations Rigidity Multitriangulations and rigidity

k -triangulations

Two easy constructions

Start with a complete graph on 2k + 1 of the points and
iteratively add “k -ears”

• 1

•2
•3

•4
•5

•6

•7

•8
•9 •

10

•11

•12



Multitriangulations Rigidity Multitriangulations and rigidity

k -triangulations

Two easy constructions

Start with a complete graph on 2k + 1 of the points and
iteratively add “k -ears”

• 1

•2
•3

•4
•5

•6

•7

•8
•9 •

10

•11

•12



Multitriangulations Rigidity Multitriangulations and rigidity

k -triangulations

Two easy constructions

Start with a complete graph on 2k + 1 of the points and
iteratively add “k -ears”

• 1

•2
•3

•4
•5

•6

•7

•8
•9 •

10

•11

•12



Multitriangulations Rigidity Multitriangulations and rigidity

k -triangulations

Two easy constructions

Start with a complete graph on 2k + 1 of the points and
iteratively add “k -ears”

• 1

•2
•3

•4
•5

•6

•7

•8
•9 •

10

•11

•12



Multitriangulations Rigidity Multitriangulations and rigidity

k -triangulations

Two easy constructions

Start with a complete graph on 2k + 1 of the points and
iteratively add “k -ears”

• 1

•2
•3

•4
•5

•6

•7

•8
•9 •

10

•11

•12



Multitriangulations Rigidity Multitriangulations and rigidity

k -triangulations

Two easy constructions

Start with a complete graph on 2k + 1 of the points and
iteratively add “k -ears”

• 1

•2
•3

•4
•5

•6

•7

•8
•9 •

10

•11

•12



Multitriangulations Rigidity Multitriangulations and rigidity

k -triangulations

Two easy constructions

Start with a complete graph on 2k + 1 of the points and
iteratively add “k -ears”

• 1

•2
•3

•4
•5

•6

•7

•8
•9 •

10

•11

•12



Multitriangulations Rigidity Multitriangulations and rigidity

k -triangulations

Two easy constructions

Start with the edges of length at most k and add all edges from
nodes 1, . . . , k .
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k -triangulations

Theorem (Capoyleas-Pach 1992, Nakamigawa 2000,
Dress-Moulton-Koolen 2002)
All k-triangulations of the n-gon have the same number of edges,
equal to 2kn −

(2k+1
2

)
.

Moreover, they are connected by “flips” (operations that remove an
edge ans insert another).

k -associahedron
Is there a “polytope of k -triangulations” of the n-gon?
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The associahedron as a simplicial complex

Asso(n) = the simplicial complex with vertices the
(n

2

)
diagonals of the

n-gon and having as faces the the crossing-free sets of diagonals.
= clique complex of the crossing relation among the

(n
2

)
diagonals.

Vertices =
(
[n]
2

)
= {{i , j} : 1 ≤ i < j ≤ n}

Maximal faces (“facets”) = triangulations of the n-gon.

Minimal non-faces = crossings.
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The associahedron as a simplicial complex

Example: Asso(5).
Remark: the “irrelevant
edges” {i, i + 1} are not
shown in the complex.
Formally, we distinguish
between Asso(n), with

(n
2

)
vertices and dimension
2n − 4, and Asso(n),
with

(n
2

)
− n vertices and

dimension n − 4.

Theorem (Tamari-Stasheff-Milnor-Haiman, Lee 1989)
Asso(n) is a polytopal (n − 4)-sphere. That is, there is a simplicial
(n − 3)-polytope with face poset isomorphic to it.
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The 3-dimensional (simplicial) associahedron

n = 6 : Asso(6) is a 2-sphere with 9-vertices, 21 edges, and 14
triangles.



Multitriangulations Rigidity Multitriangulations and rigidity

The k -associahedron

DEFINITION: Assok (n) = the simplicial complex with vertices the
(n

2

)
diagonals of the n-gon and whose faces are the sets of diagonals
containing no (k + 1)-crossing.

Assok (n) =the subcomplex induced by the relevant edges (edges of
length greater than k ).

Maximal faces = k -triangulations of the n-gon.
Minimal non-faces = (k + 1)-crossings.

Theorem (Jonsson 2003)
Assok (n) is a shellable sphere of dimension k(n − 2k − 1)− 1
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The main conjecture

Conjecture 1 (Folklore?, Jonsson?)
The shellable sphere Assok (n) is polytopal.

That is, there is a simplicial polytope of dimension k(n − 2k − 1) with
face poset isomorphic to the inclusion poset of subsets of diagonals
of the n-gon not containing a k + 1-crossing.

True for n ≤ 2k + 3.

True for (k ,n) = (2,8) (Bokowski and Pilaud, 2009)

True for (2,9), (2,10), (3,10) (Crespo-S. 2023+, this talk).
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A weaker conjecture

Conjecture 1’
The shellable sphere Assok (n) is geodesic (a.k.a. star-convex).

That is, there is a complete simplicial fan of dimension
k(n − 2k − 1) with face poset isomorphic to the inclusion poset of
subsets of diagonals of the n-gon not containing a k + 1-crossing.

The weaker conjecture holds for

n ≤ 2k + 4 (Bergeron-Ceballos-Labbé, 2015)

k = 2 and n ≤ 13 (Manneville 2017).

(3,11) and (4,13) (Crespo-S. 2023+, this talk).

This includes every (k ,n) with n ≤ 13 except (3,12) and (3,13)
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Rigidity
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Bar-and-joint (infinitesimal) rigidity

Let p = {p1, . . . ,pn} ∈ Rd be points and let G = ([n],E) be a graph.
We call the pair (G,p) a framework.

The framework is (infinitesimally) flexible if there is a non-trivial
assignment of velocities v1, . . . , vn ∈ Rd to the points that maintains
all distances in the graph. That is,

〈vi − vj ,pi − pj〉 = 0 for every {i , j} ∈ E .

If this does not happen, we say (G,p) is (infinitesimally) rigid.

Theorem (Maxwell?)
Suppose that p affinely spans Rd . Then rigid frameworks on p are the
spanning sets of rows of a matrix of size

(n
2

)
×nd and rank nd −

(d+1
2

)
.
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The rigidity matrix

R(p) :=



p1 − p2 p2 − p1 0 . . . 0 0
p1 − p3 0 p3 − p1 . . . 0 0

...
...

...
...

...
p1 − pn 0 0 . . . 0 pn − p1

0 p2 − p3 p3 − p2 . . . 0 0
...

...
...

...
...

0 0 0 . . . pn−1 − pn pn − pn−1


.

This in particular defines the rigidity matroid R(p) of p, with
(n

2

)
elements and rank nd −

(d+1
2

)
.
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A numerical coincidence

If we let d = 2k then the rank of the rigidity matrix equals

2nk −
(

2k + 1
2

)
= size of every k -triangulation.

This led us to conjecture

Conjecture 2 (Pilaud-S. 2009)
k -triangulations are bases in the rigidity matroid for some (hence for
any generic) choice of points p ⊂ R2k .
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Relation btw. Conjectures 1 and 2

If k -triangulations are rigidity bases (Conjecture 2) then the rows of
R(p) (for a valid p) provide a vector configuration in which every
k -triangulation spans a simplicial cone of the right dimension.

This configuration might be the set of normal vectors of a simplicial
fan realizing Assok (n) (⇒ Conjecture 1’).

Hopefully, the fan is polytopal (⇒ Conjecture 1).
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Status of Conjecture 2

It holds for k = 2 (Pilaud-S., 2009).

In all cases where Conjecture 1 is known, Conjecture 2 is known
too.

For every k ≥ 3 and n ≥ 2k + 3 there is a p along the moment
curve that is not valid: it makes some k -triangulation dependent.
(Crespo-S. 2023+).
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Two alternative forms of rigidity

As before, let p = {p1, . . . ,pn} ∈ Rd be points, and consider the
following modified rigidity matrix:

H(p) :=



p2 −p1 0 . . . 0 0
p3 0 −p1 . . . 0 0
...

...
...

...
...

pn 0 0 . . . 0 −p1
0 p3 −p2 . . . 0 0
...

...
...

...
...

0 0 0 . . . pn −pn−1


.

Kalai’s hyperconnectivity matrix / matroid
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Two alternative forms of rigidity

Let now q = {(x1, y1), . . . , (xn, yn)} ∈ R2 be points, choose a “degree”
d ∈ N, and consider the following modified rigidity matrix:

Cd (q) :=



c1,2 −c1,2 0 . . . 0 0
c1,3 0 −c1,3 . . . 0 0

...
...

...
...

...
cn,2 0 0 . . . 0 −c1,n
0 c2,3 −c2,3 . . . 0 0
...

...
...

...
...

0 0 0 . . . cn−1,n −cn−1,n


,

with cij :=
(

xd−1
ij , yijxd−2

ij , . . . , yd−1
ij

)
, xij = xi − xj , yij = yi − yj .

Whiteley’s cofactor matrix / matroid
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Two alternative forms of rigidity

Theorem (Kalai 1985, Whitely 1990)
For p or q in general position, the (row vectors of) matrices H(p) and
Cd (q) share the following properties with R(p):

1 Their rank equals nd −
(d+1

2

)
.

2 Every Kd+2 is a circuit.

Matroids in
(
[n]
2

)
with these properties are precisely the abstract

rigidity matroids of Graver 1991 (as proved by Nguyen 2010).
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An important common case; the moment curve

Let t = (t1, . . . , tn) be real parameters, and consider the
configurations p(t) ⊂ Rd with pi = (t1, . . . , td

i ) along the moment
curve and q(t) ⊂ R2 with qi = (t1, t2

i ) along the parabola. Then

Theorem (Crespo-Santos 2023)
The matrices R(p(t)), H(p(t)) and Cd (q(t)) are equivalent under
multiplication on the left by a nonsingular matrix. In particular, the
associated oriented matroids coincide.

We denote this common (oriented) matroid Pd (t), and call Pd (n) the
generic one.

Conjecture 2’ (Stronger than Conjecture 2)
k -triangulations of the n-gon are bases in P2k (n).

Status: same as Conjecture 2 (Crespo-S. 2023+).
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A bright idea

Cofactor rigidity of degree d shares most of the properties of
bar-and-joint rigidity in dimension d , yet it is about points in the plane.

Maybe this is the right tool to embed the multiassociahedron.

Conjecture 3 (S., ' 2021)
For every choice of points q = {q1, . . . ,qn} in convex position, the
rows of C2k (q) embed Assok (n) as a polytopal fan.



Multitriangulations Rigidity Multitriangulations and rigidity

A bright idea

Cofactor rigidity of degree d shares most of the properties of
bar-and-joint rigidity in dimension d , yet it is about points in the plane.

Maybe this is the right tool to embed the multiassociahedron.

Conjecture 3 (S., ' 2021)
For every choice of points q = {q1, . . . ,qn} in convex position, the
rows of C2k (q) embed Assok (n) as a polytopal fan.

Status of Conjecture 3:
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FALSE for k = 3,n ≥ 9 (Crespo-S., 2023+)
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A bright idea

Cofactor rigidity of degree d shares most of the properties of
bar-and-joint rigidity in dimension d , yet it is about points in the plane.

Maybe this is the right tool to embed the multiassociahedron.

Conjecture 3’
For some choice of points q = {q1, . . . ,qn} in convex position, the
rows of C2k (q) embed Assok (n) as a polytopal fan.

Status of Conjecture 3’:

True for k = 1 (Rote-S.-Streinu 2003)

FALSE for k = 3,n ≥ 12 (Crespo-S., 2023+)
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Multitriangulations and Rigidity
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Polytopality via vector configurations

Our heuristics for politopality: Given a simplicial (d − 1)-sphere ∆
with vertex set [n] and a vector configuration V = {v1, . . . , vn} ⊂ Rd

we check three things (each stronger than the previous one):

1 Are all faces of ∆ linearly independent in V? (compute ranks)

2 Is ∆ a “triangulation of V ” (a.k.a. simplicial fan)? (compute
orientations)

3 Is ∆ a “regular triangulation of V ” (a.k.a. projective fan; a.k.a.
the normal fan of a simplicial polytope)? (linear feasibility)

If successful, these three computations answer Conjectures 2, 1’ and
1 in the positive, respectively.
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Our experiments

We have implemented this with ∆ = Assok (n) and with V =“rows of
the cofactor matrix of n points along the parabola” (equivalently,
“bar-and-joint with points along the moment curve”).

There are two “natural” choices of points:

Equispaced along the parabola: ti = i , that is, qi = (i , i2)

Equispaced along the circle: Vertices of a regular n-gon, sent to
the parabola via projective transformation

(Remark: projective transformations preserve the three forms of
rigidity).
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Our experiments; k = 2

With k = 2 all positions we have tried realize the complete fan,
but not always the polytope. (We have been able to compute up
to n = 13).

Equispaced positions along the parabola give a polytopal fan for
n ≤ 9.

Positions t = (2,1,2,3,4,5,6,7,9,20) give a polytopal fan for
n = 10.

We have not found positions giving a polytopal fan for n > 10
(but our experiments are not conclusive).

Conjecture 3” (S.-Crespo 2023)
For k = 2 and any n, all positions along the parabola / moment curve
realize Asso2(n) as a complete simplicial fan.
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Our experiments; k > 2

With k = 3 and n ≥ 9 there are positions where some
k -triangulations are not bases.

With k = 3 and n ≤ 11 (and k = 4 and n ≤ 13) equispaced
positions on the circle realize the fan.

With k = 3 and n ≤ 10 the positions
t = (2,1,2,3,4,5,6,7,9,20) realize the polytope.

With k = 3 and n ≥ 12 (and k > 3 and n ≥ 2k + 6) no positions
realize the fan.
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An obstruction

The last point is not an experiment, but a theorem:

Theorem (Crespo-S. 2023)
For any choice q = {q1, . . . ,q12} ⊂ R2 of points in convex position
there is a 3-triangulation that does not get the right orientation as a
cone in the row-vectors of cofactor rigidity C3(q).
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Idea of proof

Let T9 := K9 \ { 16,37,49 }. It is a 3-triangulation, and is also a
triple cone over the graph of an octahedron.

The graph of an octahedron is a circuit or a basis or in C3(6)
depending on whether the three missing edges are concurrent
or not (“Morgan-Scott obstruction”, 1975).

When they are not concurrent, their sign as a rigidity basis is
determined by the orientation of the triangle they form.

Rigidity (both cofactor and bar-and-joint) behaves well with
coning.
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Idea of proof

Corollary
T9 gets the correct orientation on nine given points if, and only if, the
“inner half-planes” defined by the three missing edges 16,37, and 49
have non-empty intersection.

good bad
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Idea of proof

Corollary
For any 12 points q = {q1, . . . ,q12} ⊂ R2 in convex position either the
3 triangulation containing T9 on q \ {q2,q6,q10} or the one on on
q \ {q4,q8,q12} gets the wrong orientation.

bad bad
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Summing up

Rigidity seemed a bright idea to realize the
multiassociahedron. . . but it is proven not to work.

Maybe the polytopality conjecture is false . . . This would be the
first (?) family of “naturally defined” shellable simplicial spheres
that turn out not to be polytopal.

The case k = 2 of the polytopality conjecture may still be true.

A computational challenge
Is Asso3(12) polytopal? (42 vertices, 379 236 facets, dimension 14)
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The case k = 2 of the polytopality conjecture may still be true.
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The end

Thank you


	Multitriangulations
	Rigidity
	Multitriangulations and rigidity

