Infinite Chains in the Tree of Numerical Semigroups

Bienal RSME 2024 en Pamplona, Navarra Sesión 4: Matemática Discreta y Algorítmica

Mariana Rosas-Ribeiro

Joint work with Maria Bras-Amorós

Universitat Rovira i Virgilli

Jan 23, 2024

Numerical semigroups

The tree

Infinite chains

Minority of semigroups in infinite chains

Fixing the multiplicity

Numerical semigroups

A set $\Lambda \subset \mathbb{N}_0$ is a numerical semigroup if it contains 0 it is closed for addition it has a finite complement in \mathbb{N}_0 Examples $(n)^{n+1}(n+2)^{n+3}$ O_n : Ordinary semigroup $G(O_n) = \{1, \ldots, n\}$, the set of *qaps* of O_n $q(O_n) = n$, the genus of O_n $H_2: \frac{0(1)(2)(3)(4)(5)}{2}$ Hyperelliptic semigroup $G(H_3) = \{1, 3, 5\}$ $q(H_3) = 3$

A problem. Is the sequence n_g formed by the number of numerical semigroups of genus g increasing? How does it grow?

▶ (2008 - M. Bras-Amorós) conjectured that n_g grows Fibonacci-like.

• (2012 - A. Zhai) proved $\frac{n_g}{\varphi^g} \xrightarrow{g \to \infty} S$, where φ is the golden ratio and S is at least 3.78.

It is not yet proven whether
$$n_{g-2} + n_{g-1} \le n_g$$
 or even $n_{g-1} \le n_g$.

Some invariants and notation

 $H_3: \begin{array}{c} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ \cdots \\ H_3: \begin{array}{c} \lambda_0 \\ \lambda_1 \\ \lambda_2 \\ \lambda_3 \\ \lambda_4 \\ \lambda_5 \\ \cdots \end{array}$

 $hyperelliptic\ semigroup\ of\ genus\ 3$

enumeration Λ of H_3

 $m(H_3) = 2$, the *multiplicity* of H_3

 $f(H_3) = 5$, the Frobenius number of H_3

 $c(H_3) = 6$, the *conductor* of H_3

 $\mathcal{L}(H_3) = \{0, 2, 4\}, \text{ the left elements of } H_3$

 $\langle 2,7\rangle = H_3$, we say 2,7 are the minimal generators of H_3

The minimal generators that are not in $\mathcal{L}(\Lambda)$ are the right generators of Λ .

7 is the only right generator of H_3

• (2012 - A. Zhai) proved $\frac{n_g}{\varphi^g} \xrightarrow{g \to \infty} S$, where φ is the golden ratio and S is at least 3.78.

It is not yet proven whether
$$n_{g-2} + n_{g-1} \le n_g$$
 or even $n_{g-1} \le n_g$.

Some invariants and notation

 $H_{3}: \begin{array}{c} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ \cdots \\ H_{3}: \begin{array}{c} 0 \\ \lambda_{0} \\ \lambda_{1} \\ \lambda_{2} \\ \lambda_{3} \\ \lambda_{4} \\ \lambda_{5} \\ \cdots \\ \lambda_{5} \\ \cdots \\ \lambda_{5} \\ \cdots \\ \lambda_{5} \\ \cdots \\ \lambda_{5} \\ \lambda_{5} \\ \lambda_{5} \\ \cdots \\ \lambda_{5} \\ \cdots \\ \lambda_{5} \\ \lambda_{5} \\ \lambda_{5} \\ \ldots \\ \lambda_{5} \\ \lambda_{5} \\ \ldots \\ \lambda_{5} \\ \lambda_{5} \\ \ldots \\ \lambda_{5} \\ \lambda_{5} \\ \lambda_{5} \\ \ldots \\ \lambda_{5} \\ \lambda_{5} \\ \lambda_{5} \\ \ldots \\ \lambda_{5} \\ \lambda_{5} \\ \ldots \\ \lambda_{5} \\ \lambda_{5} \\ \ldots \\ \lambda_{5} \\ \lambda_{5} \\ \lambda_{5} \\ \ldots \\$

hyperelliptic semigroup of genus 3

enumeration Λ of H_3

 $m(H_3) = 2$, the multiplicity of H_3

 $f(H_3) = 5$, the Frobenius number of H_3

 $c(H_3) = 6$, the *conductor* of H_3

 $\mathcal{L}(H_3) = \{0, 2, 4\}, \text{ the left elements of } H_3$

 $\langle 2,7\rangle = H_3$, we say 2,7 are the minimal generators of H_3

The minimal generators that are not in $\mathcal{L}(\Lambda)$ are the right generators of Λ .

7 is the only right generator of H_3

The tree

In tree,

Nodes are numerical semigroups We have Child, Parent, Descendant And Leaf, Stick, Bush

Tree structure of numerical semigroups up to level 9

Infinite chains

Lemma 1. Given an infinite chain $I = (\Lambda_i)_{i\geq 0}$ different than $I_{\mathcal{O}}$, it holds that $\bigcap_{i\geq 0} \Lambda_i = d \cdot \Lambda$ for some integer d > 1 and some numerical semigroup Λ .

Lemma 2. Given an integer d > 1 and a numerical semigroup Λ , the infinite chain obtained by deleting repetitions in the sequence $\Lambda_j = d \cdot \Lambda \cup \{l \in \mathbb{N} : l \geq j\}$ has intersection $d \cdot \Lambda$.

Consequently, $\mathbb{I} \setminus I_{\mathcal{O}}$ and $\mathbb{N}_{\geq 2} \times \mathbb{S}$ are in a one-to-one correspondence.

For example, in this correspondence, the image of $I_{\mathcal{H}} = \{\mathcal{H}_g : g \ge 0\}$ would be $(2, \mathbb{N}_0)$.

Definition. A descendant of a numerical semigroup *beyond* a given nongap of the semigroup is a descendant that contains all nongaps up to the given nongap.

Theorem. Let Λ be a non-ordinary numerical semigroup with enumeration λ , genus g, and conductor c, and let d be the greatest common divisor of $\mathcal{L}(\Lambda)$. Then,

- 1. A lies in an infinite chain if and only if $d \neq 1$.
- 2. If d = 1, then the descendant of Λ with largest genus is the numerical semigroup generated by $\lambda_1, \ldots, \lambda_{c-g-1}$.
- 3. If $d \neq 1$ and d is not prime, then Λ lies in infinitely many infinite chains.
- 4. If d is a prime then the number of infinite chains in which Λ lies is one plus the number of descendants of $\{0, \frac{\lambda_1}{d}, \dots, \frac{\lambda_{c-g-1}}{d}\} \cup \{l \in \mathbb{N}_0 : l \geq \lceil \frac{c}{d} \rceil\}$ beyond $\frac{\lambda_{c-g-1}}{d}$.

Minority of semigroups in infinite chains

Corollary. If the numerical semigroup Λ lies in an infinite chain, then it has at most two children in an infinite chain.

And we explicitly know that the only two possible children of a semigroup Λ that have infinitely many descendants are $\Lambda \setminus \{c\}$ or $\Lambda \setminus \{c+1\}$.

Proposition. Except for $\mathbb{N}_0 \setminus \{1\}$ and hyperelliptic semigroups, every numerical semigroup that is in an infinite chain has at least one child that is not.

Definition. A numerical semigroup is *fertile* if most of its children are in infinite chains.

Proposition. A fertile numerical semigroup Λ of genus g > 2 has three children if and only if $\Lambda = \{4k : k \ge 0\} \cup [4n + 2, \infty)$ for some $n \ge 1$.

Theorem. The unique fertile semigroups of genus g are:

$$\blacktriangleright \mathbb{N}_0 \text{ if } g = 0.$$

$$\blacktriangleright \mathbb{N}_0 \setminus \{1\} \text{ if } g = 1.$$

$$\blacktriangleright H_g \text{ if } g > 1 \text{ and } g \neq 1 \mod 3.$$

•
$$H_g$$
 and $M_{\frac{g-1}{3}}$ if $g > 1$ and $g = 1 \mod 3$.

 $i_g := \#\{\Lambda : g(\Lambda) = g \text{ and } \Lambda \text{ lies in an infinite chain}\}$

Theorem. For $g \ge 5$ we have $i_g < \frac{n_g}{2}$.

Fixing the multiplicity

Numerical semigroups tree up to genus 9, with infinite chains highlighted.

Numerical semigroups tree up to genus 9, with infinite chains highlighted.

Definition. The push of Λ , with enumeration λ , by its multiplicity is the numerical semigroup $\lambda_1 \oplus \Lambda := \{0\} \cup \{\lambda_1 + \lambda_j; \lambda_j \in \Lambda\}.$

Corollary. Let Λ be a numerical semigroup with enumeration λ and let Π be a non-ordinary numerical semigroup. Then,

- If λ_k is a (effective) generator of Λ , then $\lambda_1 + \lambda_k$ is a (effective) generator of $\lambda_1 \oplus \Lambda$.
- Π is a child of Λ if and only if $\lambda_1 \oplus \Pi$ is a child of $\lambda_1 \oplus \Lambda$.
- Λ lies in an infinite chain if and only if so does $\lambda_1 \oplus \Lambda$.

$$\lambda_1 \oplus^n \Lambda := \underbrace{\lambda_1 \oplus (\cdots (\lambda_1 \oplus (\lambda_1 \oplus \Lambda)))}_{n \text{ times}}, n \ge 2$$

For each prime multiplicity there is only one infinite chain containing semigroups of that multiplicity. Indeed, this unique chain is $\omega(m, \mathbb{N}_0)$.

Theorem. If m is a prime, then the number $i_g(m)$ of numerical semigroups of genus g and multiplicity m that are in an infinite chain is:

▶ 0, if
$$g < m - 1$$
,

▶ 1, otherwise.

Multiplicity 4

Tree structure of numerical semigroups of multiplicity 4 that are in an infinite chain, from genus 4 to 7.

Tree structure of numerical semigroups of multiplicity 4 that are in an infinite chain, from genus 4 to 10.

Theorem. The number $i_g(m = 4)$ of numerical semigroups of genus g and multiplicity 4 that are in an infinite chain is:

Tree of numerical semigroups in infinite chains, with multiplicity 4, from genus 3 up to 40.

Tree structure which is replicated on numerical semigroups tree in an infinite chain with multiplicity 6

- ► T_n, U_n, X_n lie to 1 infinite chain
- \triangleright S_n, V_n lie to *n* infinite chains

N. semigroups in infinite chains, with multiplicity 6, from genus 5 up to 16

N. semigroups in infinite chains, multiplicity 6, from genus 5 up to genus 31

Theorem. The number $i_g(m = 6)$ of numerical semigroups of genus g and multiplicity 6 that are in an infinite chain is:

References

M. Rosas-Ribeiro and M. Bras-Amorós

INFINITE CHAINS IN THE TREE OF NUMERICAL SEMIGROUPS ARXIV, (2023)

M. Bras-Amorós

BOUNDS ON THE NUMBER OF NUMERICAL SEMIGROUPS OF A GIVEN GENUS JOURNAL OF PURE AND APPLIED ALGEBRA, **213**, p. 997–1001 (2008)

M. Bras-Amorós and S. Bulygin

Towards a better understanding of the semigroup tree Semigroup Forum, **79**, p. 561-574 (2009)

A. Zhai

FIBONACCI-LIKE GROWTH OF NUMERICAL SEMIGROUPS OF A GIVEN GENUS SEMIGROUP FORUM, **86**, p. 634-662 (2013)

J. FROMENTIN AND F. HIVERT.

EXPLORING THE TREE OF NUMERICAL SEMIGROUPS MATHEMATICS OF COMPUTATION, **85**, p. 2553-2568 (2016)

P.A. GARCIA-SANCHEZ AND J.C. ROSALES NUMERICAL SEMIGROUPS NEW YORK: SPRINGER, 2009

A. ASSI, M. D'ANNA AND P.A. GARCIA-SANCHEZ NUMERICAL SEMIGROUPS AND APPLICATIONS SPRINGER, 2016 Muito obrigada!

🖂 mariana.rosas@urv.cat

This research was funded by the PhD Program of the "Secretaria d'Universitats i Recerca del Departament de Recerca i Universitats de la Generalitat de Catalunya" (2021 FISDU 00189)

