Infinite Chains in the Tree of Numerical Semigroups

Bienal RSME 2024 en Pamplona, Navarra Sesión 4: Matemática Discreta y Algorítmica

Mariana Rosas-Ribeiro

Joint work with Maria Bras-Amorós

Universitat Rovira i Virgilli

Jan 23, 2024

[Numerical semigroups](#page-2-0)

[The tree](#page-6-0)

[Infinite chains](#page-15-0)

[Minority of semigroups in infinite chains](#page-18-0)

[Fixing the multiplicity](#page-21-0)

[Numerical semigroups](#page-2-0)

A set $\Lambda \subset \mathbb{N}_0$ is a numerical semigroup if
it is closed for addition it has a finit it contains 0 it is closed for addition it has a finite complement in \mathbb{N}_0

Examples

Ordinary semigroup

 $G(O_n) = \{1, \ldots, n\}$, the set of gaps of O_n $q(O_n) = n$, the genus of O_n

Hyperelliptic semigroup

 $G(H_3) = \{1, 3, 5\}$ $q(H_3) = 3$

 $H_3: \frac{0.1121341566788}{2}$

 $O_n: \quad \overbrace{0\,1} \cdots \overbrace{1\,n+1} \overbrace{1\cdots 2} \overbrace{1\cdots 3} \cdots$

A problem. Is the sequence n_a formed by the number of numerical semigroups of genus g increasing? How does it grow?

(2008 - M. Bras-Amorós) conjectured that n_q grows Fibonacci-like.

. . .

▶ (2012 - A. Zhai) proved $\frac{n_g}{\varphi^g}$ $\frac{g\rightarrow\infty}{S}$, where φ is the golden ratio and S is at least 3.78.

It is not yet proven whether
$$
n_{g-2} + n_{g-1} \le n_g
$$
 or even $n_{g-1} \le n_g$.

Some invariants and notation

 H_3 : \bigcup $0 (1) 2 (3) 4 (5) 6 (7) 8$. . . H_2 : λ_0 λ_1 λ_2 λ_3 λ_4 λ_5 . . .

hyperelliptic semigroup of genus 3

enumeration Λ of H_3

 $m(H_3) = 2$, the multiplicity of H_3

 $f(H_3) = 5$, the Frobenius number of H_3

 $c(H_3) = 6$, the *conductor* of H_3

 $\mathcal{L}(H_3) = \{0, 2, 4\}$, the *left elements* of H_3

 $\langle 2, 7 \rangle = H_3$, we say 2, 7 are the minimal generators of H_3

The minimal generators that are not in $\mathcal{L}(\Lambda)$ are the right generators of Λ .

7 is the only right generator of H_3

▶ (2012 - A. Zhai) proved $\frac{n_g}{\varphi^g}$ $\frac{g\rightarrow\infty}{S}$, where φ is the golden ratio and S is at least 3.78.

It is not yet proven whether
$$
\boxed{n_{g-2} + n_{g-1} \le n_g}
$$
 or even $n_{g-1} \le n_g$.

Some invariants and notation

hyperelliptic semigroup of genus 3

enumeration Λ of H_3

 $m(H_3) = 2$, the multiplicity of H_3

$$
f(H_3) = 5
$$
, the *Frobenius number* of H_3

$$
c(H_3) = 6
$$
, the conductor of H_3

$$
\mathcal{L}(H_3) = \{0, 2, 4\},
$$
 the *left elements* of H_3

 $\langle 2, 7 \rangle = H_3$, we say 2, 7 are the minimal generators of H_3

The minimal generators that are not in $\mathcal{L}(\Lambda)$ are the right generators of Λ .

7 is the only right generator of H_3

[The tree](#page-6-0)

In tree,

Nodes are numerical semigroups We have Child, Parent, Descendant And Leaf, Stick, Bush

Tree structure of numerical semigroups up to level 9

[Infinite chains](#page-15-0)

Lemma 1. Given an infinite chain $I = (\Lambda_i)_{i>0}$ different than $I_{\mathcal{O}}$, it holds that $\bigcap_{i\geq 0} \Lambda_i = d \cdot \Lambda$ for some integer $d > 1$ and some numerical semigroup Λ .

Lemma 2. Given an integer $d > 1$ and a numerical semigroup Λ , the infinite chain obtained by deleting repetitions in the sequence $\Lambda_i = d \cdot \Lambda \cup \{l \in \mathbb{N} : l \geq j\}$ has intersection $d \cdot \Lambda$.

Consequently, $\mathbb{I} \setminus I_{\mathcal{O}}$ and $\mathbb{N}_{\geq 2} \times \mathbb{S}$ are in a one-to-one correspondence.

For example, in this correspondence, the image of $I_{\mathcal{H}} = {\mathcal{H}_a : g \ge 0}$ would be $(2, \mathbb{N}_0)$.

Definition. A descendant of a numerical semigroup beyond a given nongap of the semigroup is a descendant that contains all nongaps up to the given nongap.

Theorem. Let Λ be a non-ordinary numerical semigroup with enumeration λ, genus q, and conductor c, and let d be the greatest common divisor of $\mathcal{L}(\Lambda)$. Then,

- 1. A lies in an infinite chain if and only if $d \neq 1$.
- 2. If $d = 1$, then the descendant of Λ with largest genus is the numerical semigroup generated by $\lambda_1, \ldots, \lambda_{c-q-1}$.

3. If $d \neq 1$ and d is not prime, then Λ lies in infinitely many infinite chains.

4. If d is a prime then the number of infinite chains in which Λ lies is one plus the number of descendants of $\{0, \frac{\lambda_1}{d}, \ldots, \frac{\lambda_{c-g-1}}{d}\}$ $\frac{d}{d} \cup \{l \in \mathbb{N}_0 : l \geq \lceil \frac{c}{d} \rceil\}$ beyond $\frac{\lambda_{c-g-1}}{d}$.

[Minority of semigroups in infinite chains](#page-18-0)

Corollary. If the numerical semigroup Λ lies in an infinite chain, then it has at most two children in an infinite chain.

And we explicitly know that the only two possible children of a semigroup Λ that have infinitely many descendants are $\Lambda \setminus \{c\}$ or $\Lambda \setminus \{c+1\}.$

Proposition. Except for $\mathbb{N}_0 \setminus \{1\}$ and hyperelliptic semigroups, every numerical semigroup that is in an infinite chain has at least one child that is not.

Definition. A numerical semigroup is fertile if most of its children are in infinite chains.

Proposition. A fertile numerical semigroup Λ of genus $q > 2$ has three children if and only if $\Lambda = \{4k : k \geq 0\} \cup [4n + 2, \infty)$ for some $n \geq 1$.

Theorem. The unique fertile semigroups of genus q are:

$$
\blacktriangleright \mathbb{N}_0 \text{ if } g = 0.
$$

$$
\blacktriangleright \mathbb{N}_0 \setminus \{1\} \text{ if } g = 1.
$$

$$
\blacktriangleright H_g \text{ if } g > 1 \text{ and } g \neq 1 \mod 3.
$$

$$
\blacktriangleright H_g \text{ and } M_{\frac{g-1}{3}} \text{ if } g > 1 \text{ and } g = 1 \mod 3.
$$

 $i_q := \#\{\Lambda : q(\Lambda) = q \text{ and } \Lambda \text{ lies in an infinite chain}\}\$

Theorem. For $g \geq 5$ we have $i_g < \frac{n_g}{2}$ $rac{eg}{2}$. [Fixing the multiplicity](#page-21-0)

Numerical semigroups tree up to genus 9, with infinite chains highlighted.

Numerical semigroups tree up to genus 9, with infinite chains highlighted.

Definition. The push of Λ , with enumeration λ , by its multiplicity is the numerical semigroup $\lambda_1 \oplus \Lambda := \{0\} \cup \{\lambda_1 + \lambda_i; \lambda_i \in \Lambda\}.$

Corollary. Let Λ be a numerical semigroup with enumeration λ and let Π be a non-ordinary numerical semigroup. Then,

- \blacktriangleright If λ_k is a (effective) generator of Λ , then $\lambda_1 + \lambda_k$ is a (effective) generator of $\lambda_1 \oplus \Lambda$.
- \blacktriangleright Π is a child of Λ if and only if $\lambda_1 \oplus \Pi$ is a child of $\lambda_1 \oplus \Lambda$.
- \blacktriangleright Λ lies in an infinite chain if and only if so does $\lambda_1 \oplus \Lambda$.

$$
\lambda_1 \oplus^n \Lambda := \underbrace{\lambda_1 \oplus (\cdots (\lambda_1 \oplus (\lambda_1 \oplus \Lambda)))}_{n \text{ times}}, n \geq 2
$$

For each prime multiplicity there is only one infinite chain containing semigroups of that multiplicity. Indeed, this unique chain is $\omega(m, \mathbb{N}_0)$.

Theorem. If m is a prime, then the number $i_q(m)$ of numerical semigroups of genus q and multiplicity m that are in an infinite chain is:

$$
\blacktriangleright 0, \text{ if } g < m-1,
$$

 \blacktriangleright 1, otherwise.

Multiplicity 4

Tree structure of numerical semigroups of multiplicity 4 that are in an infinite chain, from genus 4 to 7.

Tree structure of numerical semigroups of multiplicity 4 that are in an infinite chain, from genus 4 to 10.

Theorem. The number $i_q(m = 4)$ of numerical semigroups of genus q and multiplicity 4 that are in an infinite chain is:

\n- 0, if
$$
g \leq 2
$$
\n- 1 if $g = 3, 4$
\n- $\left\lfloor \frac{g+1}{3} \right\rfloor$, if $g \geq 5$.
\n

Tree of numerical semigroups in infinite chains, with multiplicity 4, from genus 3 up to 40.

Tree structure which is replicated on numerical semigroups tree in an infinite chain with multiplicity 6

- $\blacktriangleright T_n, U_n, X_n$ lie to 1 infinite chain
- \blacktriangleright S_n , V_n lie to *n* infinite chains

N. semigroups in infinite chains, with multiplicity 6, from genus 5 up to 16

N. semigroups in infinite chains, multiplicity 6, from genus 5 up to genus 31

Theorem. The number $i_q(m = 6)$ of numerical semigroups of genus g and multiplicity 6 that are in an infinite chain is:

References

M. Rosas-Ribeiro and M. Bras-Amorós

Infinite chains in the tree of numerical semigroups arXiv, (2023)

M. Bras-Amorós

Bounds on the number of numerical semigroups of a given genus JOURNAL OF PURE AND APPLIED ALGEBRA, 213, P. 997-1001 (2008)

M. Bras-Amorós and S. Bulygin

Towards a better understanding of the semigroup tree Semigroup Forum, 79, p. 561–574 (2009)

A. Zhai

Fibonacci-like growth of numerical semigroups of a given genus Semigroup Forum, 86, p. 634–662 (2013)

J. Fromentin and F. Hivert.

Exploring the tree of numerical semigroups Mathematics of Computation, 85, p. 2553-2568 (2016)

P.A. Garcia-Sanchez and J.C. Rosales Numerical semigroups New York: Springer, 2009

A. Assi, M. D'Anna and P.A. Garcia-Sanchez Numerical semigroups and Applications Springer, 2016

Muito obrigada!

mariana.rosas@urv.cat

This research was funded by the PhD Program of the "Secretaria d'Universitats i Recerca del Departament de Recerca i Universitats de la Generalitat de Catalunya" (2021 FISDU 00189)

