María A. Hernández Cifre

#### (joint work with E. Lucas and J. Yepes Nicolás)

Universidad de Murcia

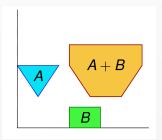
Pamplona, January 2024

Congreso Bienal de la RSME

## Ingredients in Brunn-Minkowski's inequality

• The Minkowski addition A + B of two sets  $A, B \subset \mathbb{R}^n$  is

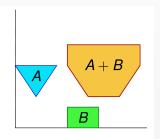
$$A+B=ig\{a+b:a\in A,b\in Big\}$$



## Ingredients in Brunn-Minkowski's inequality

• The Minkowski addition A + B of two sets  $A, B \subset \mathbb{R}^n$  is

$$A + B = \{a + b : a \in A, b \in B\}$$



•  $\operatorname{vol}(K)$  = volume (Lebesgue measure) of  $K \subset \mathbb{R}^n$ .

## The Brunn-Minkowski inequality

Relating the volume with the Minkowski addition of compact sets (not necessarily convex), one is led to the famous Brunn-Minkowski inequality:

#### Brunn-Minkowski's inequality

Let  $K, L \subset \mathbb{R}^n$  be non-empty compact sets. Then

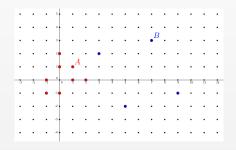
 $\operatorname{vol}(K+L)^{1/n} \ge \operatorname{vol}(K)^{1/n} + \operatorname{vol}(L)^{1/n}.$ 

If vol(K)vol(L) > 0 then equality holds if and only if K and L are homothetic convex bodies.

Next we move it to the discrete setting, which can be carried out from two points of view:

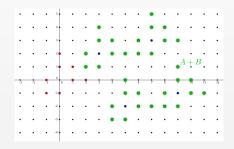
Next we move it to the discrete setting, which can be carried out from two points of view:

We consider finite subsets A, B ⊂ Z<sup>n</sup> of integer points (with the Minkowski addition),



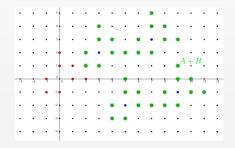
Next we move it to the discrete setting, which can be carried out from two points of view:

• We consider finite subsets  $A, B \subset \mathbb{Z}^n$  of integer points (with the Minkowski addition),



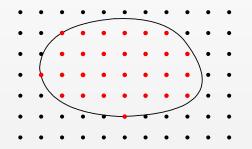
Next we move it to the discrete setting, which can be carried out from two points of view:

We consider finite subsets A, B ⊂ Z<sup>n</sup> of integer points (with the Minkowski addition), being now our measure the cardinality | · |.



Next we move it to the discrete setting, which can be carried out from two points of view:

- We consider finite subsets A, B ⊂ Z<sup>n</sup> of integer points (with the Minkowski addition), being now our measure the cardinality | · |.
- Or we work with K, L ⊂ ℝ<sup>n</sup> convex bodies and our way of measuring will be the lattice point enumerator G<sub>n</sub>(·) = | · ∩ℤ<sup>n</sup>|.



L...for the cardinality

### Is there a classical discrete B-M inequality for $|\cdot|$ ?

Does a discrete Brunn-Minkowski inequality exist in the classical form for the cardinality? Namely, is it true that

```
|A + B|^{1/n} \ge |A|^{1/n} + |B|^{1/n}
```

for  $A, B \subset \mathbb{Z}^n$  finite?

\_\_\_\_\_...for the cardinality

## Is there a classical discrete B-M inequality for $|\cdot|$ ?

Does a discrete Brunn-Minkowski inequality exist in the classical form for the cardinality? Namely, is it true that

```
|A + B|^{1/n} \ge |A|^{1/n} + |B|^{1/n}
```

for  $A, B \subset \mathbb{Z}^n$  finite?

#### NO! (in general)

For  $A = \{0\}$  and any  $B \subset \mathbb{Z}^n$  (finite),

 $|A + B|^{1/n} = |B|^{1/n} < 1 + |B|^{1/n} = |A|^{1/n} + |B|^{1/n}.$ 

On discrete Brunn-Minkowski type inequalities Discrete versions of the Brunn-Minkowski inequality

\_\_\_\_\_...for the cardinality

## Is there a classical discrete B-M inequality for $|\cdot|$ ?

Does a discrete Brunn-Minkowski inequality exist in the classical form for the cardinality? Namely, is it true that

```
|A + B|^{1/n} \ge |A|^{1/n} + |B|^{1/n}
```

for  $A, B \subset \mathbb{Z}^n$  finite?

#### NO! (in general)

For  $A = \{0\}$  and any  $B \subset \mathbb{Z}^n$  (finite),

 $|A + B|^{1/n} = |B|^{1/n} < 1 + |B|^{1/n} = |A|^{1/n} + |B|^{1/n}.$ 

Therefore, a discrete Brunn-Minkowski type inequality should,

- either have a different structure,
- or involve modifications of the sets.

└─ ... for the cardinality

## A discrete B-M inequality by Gardner-Gronchi

Gardner&Gronchi, 2001. A discrete analogue of  $vol(K+L) \ge vol(B_K+B_L)$ :

\_\_\_\_\_...for the cardinality

# A discrete B-M inequality by Gardner-Gronchi

Gardner&Gronchi, 2001. A discrete analogue of  $vol(K+L) \ge vol(B_K+B_L)$ :

#### A discrete Brunn-Minkowski inequality

If  $A, B \subset \mathbb{Z}^n$  are finite sets with dim B = n, then

$$|A+B| \ge \left| D^B_{|A|} + D^B_{|B|} \right|.$$

\_\_\_\_\_...for the cardinality

## A discrete B-M inequality by Gardner-Gronchi

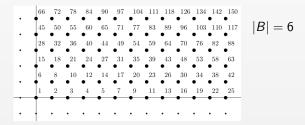
Gardner&Gronchi, 2001. A discrete analogue of  $vol(K+L) \ge vol(B_K+B_L)$ :

#### A discrete Brunn-Minkowski inequality

If  $A, B \subset \mathbb{Z}^n$  are finite sets with dim B = n, then

$$|A+B| \geq \left| D^B_{|A|} + D^B_{|B|} \right|.$$

•  $D^B_{|A|} = B$ -initial segment associated to A: for  $m \in \mathbb{N}$ ,  $D^B_m$  is the set of the first m points of  $\mathbb{Z}^n_{>0}$  in the "B-order".



\_\_\_\_\_...for the cardinality

## A discrete B-M inequality by Gardner-Gronchi

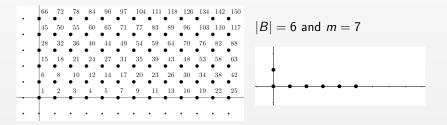
Gardner&Gronchi, 2001. A discrete analogue of  $vol(K+L) \ge vol(B_K+B_L)$ :

#### A discrete Brunn-Minkowski inequality

If  $A, B \subset \mathbb{Z}^n$  are finite sets with dim B = n, then

$$|A+B| \ge \left| D^B_{|A|} + D^B_{|B|} \right|.$$

•  $D^B_{|A|} = B$ -initial segment associated to A: for  $m \in \mathbb{N}$ ,  $D^B_m$  is the set of the first m points of  $\mathbb{Z}^n_{>0}$  in the "B-order".



\_\_\_\_\_...for the cardinality

## A discrete B-M inequality by Gardner-Gronchi

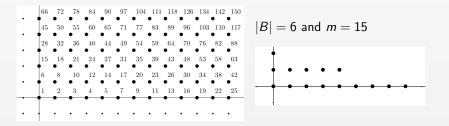
Gardner&Gronchi, 2001. A discrete analogue of  $vol(K+L) \ge vol(B_K+B_L)$ :

#### A discrete Brunn-Minkowski inequality

If  $A, B \subset \mathbb{Z}^n$  are finite sets with dim B = n, then

$$|A+B| \ge \left| D^B_{|A|} + D^B_{|B|} \right|.$$

•  $D^B_{|A|} = B$ -initial segment associated to A: for  $m \in \mathbb{N}$ ,  $D^B_m$  is the set of the first m points of  $\mathbb{Z}^n_{>0}$  in the "B-order".



\_\_\_\_\_...for the cardinality

# A discrete B-M inequality extending one of the sets

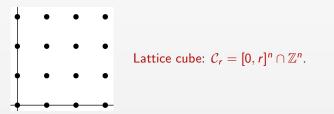
An alternative to get a "classical" B-M inequality might be to transform (one of) the sets involved in the problem, adding extra points.

## H.C., Iglesias, Yepes Nicolás, 2018

Let  $A, B \subset \mathbb{Z}^n$  be finite,  $A, B \neq \emptyset$ . Then

 $\left|\bar{\mathbf{A}}+B\right|^{1/n} \ge |A|^{1/n} + |B|^{1/n},$ 

where  $\overline{A}$  is a suitably defined extension of A (not depending on B). Equality holds when A and B are lattice cubes.

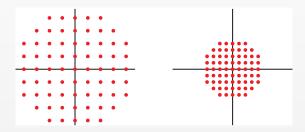


 $\square$ ...for the cardinality

#### What about a convex combination?

If  $A, B \subset \mathbb{R}^n$  are non-empty finite sets, then

$$ig|(1-\lambda)\mathsf{A}+\lambda Big|\geq \Bigl((1-\lambda)|\mathsf{A}|^{1/n}+\lambda|B|^{1/n}\Bigr)^n.$$

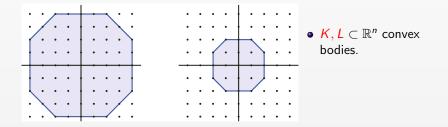


 $\square$ ...for the cardinality

#### What about a convex combination?

If  $A, B \subset \mathbb{R}^n$  are non-empty finite sets, then

$$(1-\lambda)A+\lambda Big|\geq \left((1-\lambda)|A|^{1/n}+\lambda|B|^{1/n}
ight)^n.$$

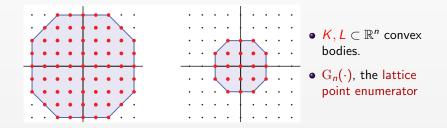


└─ ...for the cardinality

#### What about a convex combination?

If  $A, B \subset \mathbb{R}^n$  are non-empty finite sets, then

$$(1-\lambda)A+\lambda Big|\geq \left((1-\lambda)|A|^{1/n}+\lambda|B|^{1/n}
ight)^n.$$



Discrete versions of the Brunn-Minkowski inequality

\_\_\_\_\_...for the lattice point enumerator

### Is there a classical discrete B-M inequality for $G_n(\cdot)$ ?

Does a discrete Brunn-Minkowski inequality exist in the classical form for the lattice point enumerator? Namely, is it true that  $G_n((1-\lambda)K + \lambda L)^{1/n} \ge (1-\lambda)G_n(K)^{1/n} + \lambda G_n(L)^{1/n}?$ 

Discrete versions of the Brunn-Minkowski inequality

\_\_\_\_\_...for the lattice point enumerator

### Is there a classical discrete B-M inequality for $G_n(\cdot)$ ?

Does a discrete Brunn-Minkowski inequality exist in the classical form for the lattice point enumerator? Namely, is it true that  $G_n((1-\lambda)K + \lambda L)^{1/n} \ge (1-\lambda)G_n(K)^{1/n} + \lambda G_n(L)^{1/n}?$ 

**NO!** For  $K = \{0\}$  and  $L = [0, m]^n$ , with  $m \in \mathbb{N}$  odd, and  $\lambda = 1/2$ .

$$G_n\left(\frac{1}{2}K + \frac{1}{2}L\right)^{1/n} = \frac{m+1}{2} < \frac{m+2}{2} = \frac{1}{2}G_n(K)^{1/n} + \frac{1}{2}G_n(L)^{1/n}$$

Discrete versions of the Brunn-Minkowski inequality

\_\_\_\_...for the lattice point enumerator

## Is there a classical discrete B-M inequality for $G_n(\cdot)$ ?

Does a discrete Brunn-Minkowski inequality exist in the classical form for the lattice point enumerator? Namely, is it true that  $G_n((1-\lambda)K + \lambda L)^{1/n} \ge (1-\lambda)G_n(K)^{1/n} + \lambda G_n(L)^{1/n}?$ 

**NO!** For 
$$K = \{0\}$$
 and  $L = [0, m]^n$ , with  $m \in \mathbb{N}$  odd, and  $\lambda = 1/2$ .

$$G_n\left(\frac{1}{2}K+\frac{1}{2}L\right)^{1/n}=\frac{m+1}{2}<\frac{m+2}{2}=\frac{1}{2}G_n(K)^{1/n}+\frac{1}{2}G_n(L)^{1/n}.$$

#### Question

Given convex bodies  $K, L \subset \mathbb{R}^n$ , what is the "best" way to define a set M such that  $(1 - \lambda)K + \lambda L \subset M$  and

$$\mathrm{G}_n(M)^{1/n} \ge (1-\lambda)\mathrm{G}_n(K)^{1/n} + \lambda \mathrm{G}_n(L)^{1/n}$$

holds for all  $\lambda \in (0, 1)$ ?

Discrete versions of the Brunn-Minkowski inequality

\_\_\_\_...for the lattice point enumerator

### Discrete B-M inequalities for $G_n(\cdot)$

#### Iglesias, Yepes Nicolás, Zvavitch, 2020

Let  $K, L \subset \mathbb{R}^n$  be non-empty bounded sets and let  $\lambda \in (0, 1)$ . Then

$$\mathbf{G}_n((1-\lambda)\mathbf{K}+\lambda \mathbf{L}+(-1,1)^n)^{1/n} \geq (1-\lambda)\mathbf{G}_n(\mathbf{K})^{1/n}+\lambda \mathbf{G}_n(\mathbf{L})^{1/n}.$$

The inequality is sharp.

Discrete versions of the Brunn-Minkowski inequality

\_\_\_\_\_...for the lattice point enumerator

## Discrete B-M inequalities for $G_n(\cdot)$

#### Iglesias, Yepes Nicolás, Zvavitch, 2020

Let  $K, L \subset \mathbb{R}^n$  be non-empty bounded sets and let  $\lambda \in (0, 1)$ . Then

$$\mathbf{G}_n\big((1-\lambda)\mathbf{K}+\lambda \mathbf{L}+(-1,1)^n\big)^{1/n}\geq (1-\lambda)\mathbf{G}_n(\mathbf{K})^{1/n}+\lambda\mathbf{G}_n(\mathbf{L})^{1/n}.$$

The inequality is sharp.

• For  $\lambda = 1/2$  the cube  $(-1, 1)^n$  can be reduced to  $[0, 1]^n$ .

Discrete versions of the Brunn-Minkowski inequality

\_\_\_\_\_...for the lattice point enumerator

### Discrete B-M inequalities for $G_n(\cdot)$

#### Iglesias, Yepes Nicolás, Zvavitch, 2020

Let  $K, L \subset \mathbb{R}^n$  be non-empty bounded sets and let  $\lambda \in (0, 1)$ . Then

$$\mathbf{G}_n\big((1-\lambda)\mathbf{K}+\lambda \mathbf{L}+(-1,1)^n\big)^{1/n}\geq (1-\lambda)\mathbf{G}_n(\mathbf{K})^{1/n}+\lambda\mathbf{G}_n(\mathbf{L})^{1/n}.$$

The inequality is sharp.

• For  $\lambda = 1/2$  the cube  $(-1, 1)^n$  can be reduced to  $[0, 1]^n$ .

#### Halikias, Klartag, Slomka, 2020

For  $K, L \subset \mathbb{R}^n$  (non-empty) bounded sets one has

$$\operatorname{G}_n\left(rac{{\mathcal K}+L}{2}+(-1,0]^n
ight)\operatorname{G}_n\left(rac{{\mathcal K}+L}{2}+[0,1)^n
ight)\geq\operatorname{G}_n({\mathcal K})\operatorname{G}_n(L).$$

└─ The *L<sub>p</sub>*-Brunn-Minkowski theory

# Moving to the $L_p$ -setting

### The *p*-addition for $p \ge 1$

• The Minkowski sum of two convex bodies  $K, L \subset \mathbb{R}^n$  can be defined via their support functions:  $h_{K+L}(u) = h_K(u) + h_L(u)$ .

The support function  $h_{\mathcal{K}}(u) = \max\{\langle x, u \rangle : x \in \mathcal{K}\}, \ u \in \mathbb{S}^{n-1}$ 

### The *p*-addition for $p \ge 1$

- The Minkowski sum of two convex bodies K, L ⊂ ℝ<sup>n</sup> can be defined via their support functions: h<sub>K+L</sub>(u) = h<sub>K</sub>(u) + h<sub>L</sub>(u).
- This was extended by Firey, 1962: Let p ≥ 1 and K, L ⊂ ℝ<sup>n</sup> be convex bodies containing the origin in their interior. The p-sum K +<sub>p</sub> L is the unique convex body such that

 $h_{K+_{p}L}(u) = (h_{K}(u)^{p} + h_{L}(u)^{p})^{1/p}.$ 



## The *p*-addition for $p \ge 1$

- The Minkowski sum of two convex bodies K, L ⊂ ℝ<sup>n</sup> can be defined via their support functions: h<sub>K+L</sub>(u) = h<sub>K</sub>(u) + h<sub>L</sub>(u).
- This was extended by Firey, 1962: Let p ≥ 1 and K, L ⊂ ℝ<sup>n</sup> be convex bodies containing the origin in their interior. The p-sum K +<sub>p</sub> L is the unique convex body such that

$$h_{K+_pL}(u)=\left(h_K(u)^p+h_L(u)^p\right)^{1/p}.$$

• p = 1:  $K +_1 L = K + L$  (Minkowski addition).



## The *p*-addition for $p \ge 1$

- The Minkowski sum of two convex bodies K, L ⊂ ℝ<sup>n</sup> can be defined via their support functions: h<sub>K+L</sub>(u) = h<sub>K</sub>(u) + h<sub>L</sub>(u).
- This was extended by Firey, 1962: Let p ≥ 1 and K, L ⊂ ℝ<sup>n</sup> be convex bodies containing the origin in their interior. The p-sum K +<sub>p</sub> L is the unique convex body such that

$$h_{K+_pL}(u) = \left(h_K(u)^p + h_L(u)^p\right)^{1/p}.$$

- p = 1:  $K +_1 L = K + L$  (Minkowski addition).
- $p = \infty$ :  $K +_{\infty} L = \operatorname{conv}(K \cup L)$  (convex hull).



## The *p*-addition for $p \ge 1$

- The Minkowski sum of two convex bodies K, L ⊂ ℝ<sup>n</sup> can be defined via their support functions: h<sub>K+L</sub>(u) = h<sub>K</sub>(u) + h<sub>L</sub>(u).
- This was extended by Firey, 1962: Let p ≥ 1 and K, L ⊂ ℝ<sup>n</sup> be convex bodies containing the origin in their interior. The p-sum K +<sub>p</sub> L is the unique convex body such that

$$h_{K+_pL}(u) = \left(h_K(u)^p + h_L(u)^p\right)^{1/p}.$$

- p = 1:  $K +_1 L = K + L$  (Minkowski addition).
- $p = \infty$ :  $K +_{\infty} L = \operatorname{conv}(K \cup L)$  (convex hull).
- For  $1 \le p \le q \le \infty$ ,  $K +_q L \subset K +_p L$ .



# The *p*-addition. The $L_p$ -Brunn-Minkowski inequality

#### Firey, 1962:

#### The *L<sub>p</sub>*-Brunn-Minkowski inequality

Let  $K, L \subset \mathbb{R}^n$  be convex bodies containing the origin in their interior,  $\lambda \in (0, 1)$  and  $p \ge 1$ . Then

$$\operatorname{vol}((1-\lambda)\cdot K+_p\lambda\cdot L)^{p/n} \ge (1-\lambda)\operatorname{vol}(K)^{p/n} + \lambda\operatorname{vol}(L)^{p/n}$$

Here, for r > 0,  $r \cdot K = r^{1/p}K$  is the *p*-scalar product. Then

$$h_{(1-\lambda)\cdot K+_{p}\lambda\cdot L}(u) = \left((1-\lambda)h_{K}(u)^{p} + \lambda h_{L}(u)^{p}\right)^{1/p}$$

On discrete Brunn-Minkowski type inequalities  $\Box$  The  $L_p$ -Brunn-Minkowski theory  $\Box$  What about 0 ?

#### The *p*-addition. What about $0 \le p < 1$ ?

The definition of *p*-sum,

$$h_{K+_{p}L}(u) = (h_{K}(u)^{p} + h_{L}(u)^{p})^{1/p},$$

is problematic when p < 1:

### The *p*-addition. What about $0 \le p < 1$ ?

The definition of *p*-sum,

$$h_{K+_pL}(u) = \left(h_K(u)^p + h_L(u)^p\right)^{1/p},$$

is problematic when p < 1: it fails because the *p*-sum of support functions is no longer the support function of a convex body.

How can the *p*-addition be defined when p < 1?

## The *p*-addition. What about $0 \le p < 1$ ?

Any convex body K can be expressed as

$$\mathcal{K} = \bigcap_{u \in \mathbb{S}^{n-1}} \Big\{ x \in \mathbb{R}^n : \langle x, u \rangle \leq h_{\mathcal{K}}(u) \Big\}$$

## The *p*-addition. What about $0 \le p < 1$ ?

### The Wulff-shape

Let  $f : \mathbb{S}^{n-1} \longrightarrow \mathbb{R}^n_{\geq 0}$  be a continuous function. The Wulff-shape of f is the set  $\mathcal{W}(f) = \bigcap_{u \in \mathbb{S}^{n-1}} \Big\{ x \in \mathbb{R}^n : \langle x, u \rangle \leq f(u) \Big\}.$ 

Any convex body K can be expressed as

$$\mathcal{K} = igcap_{u \in \mathbb{S}^{n-1}} \Big\{ x \in \mathbb{R}^n : \langle x, u 
angle \leq h_{\mathcal{K}}(u) \Big\}$$

## The *p*-addition. What about $0 \le p < 1$ ?

### The Wulff-shape

Let  $f : \mathbb{S}^{n-1} \longrightarrow \mathbb{R}^n_{\geq 0}$  be a continuous function. The Wulff-shape of f is the set  $\mathcal{W}(f) = \bigcap_{u \in \mathbb{S}^{n-1}} \Big\{ x \in \mathbb{R}^n : \langle x, u \rangle \leq f(u) \Big\}.$ 

Any convex body K can be expressed as

$$\mathcal{K} = \bigcap_{u \in \mathbb{S}^{n-1}} \left\{ x \in \mathbb{R}^n : \langle x, u \rangle \leq h_{\mathcal{K}}(u) \right\} = \mathcal{W}(h_{\mathcal{K}}).$$

## The *p*-addition. What about $0 \le p < 1$ ?

### The Wulff-shape

Let  $f : \mathbb{S}^{n-1} \longrightarrow \mathbb{R}^n_{\geq 0}$  be a continuous function. The Wulff-shape of f is the set  $\mathcal{W}(f) = \bigcap_{u \in \mathbb{S}^{n-1}} \Big\{ x \in \mathbb{R}^n : \langle x, u \rangle \leq f(u) \Big\}.$ 

Any convex body K can be expressed as

$$\mathcal{K} = \bigcap_{u \in \mathbb{S}^{n-1}} \left\{ x \in \mathbb{R}^n : \langle x, u \rangle \leq h_{\mathcal{K}}(u) \right\} = \mathcal{W}(h_{\mathcal{K}}).$$

Thus, for convex bodies  $K, L \subset \mathbb{R}^n$  containing the origin, all  $\lambda \in (0, 1)$  and any  $p \ge 1$ ,

$$(1-\lambda)\cdot K +_{p}\lambda\cdot L = \mathcal{W}\Big(((1-\lambda)h_{K}^{p}+\lambda h_{L}^{p})^{1/p}\Big).$$

## The *p*-addition. What about $0 \le p < 1$ ?

### The Wulff-shape

Let  $f: \mathbb{S}^{n-1} \longrightarrow \mathbb{R}^n_{\geq 0}$  be a continuous function. The Wulff-shape of f is the set  $\mathcal{W}(f) = \bigcap_{u \in \mathcal{U}} \left\{ x \in \mathbb{R}^n : \langle x, u \rangle \leq f(u) \right\}.$ 

#### Definition

For  $K, L \subset \mathbb{R}^n$  convex bodies containing 0,  $\lambda \in (0, 1)$  and  $0 \le p < 1$ ,

$$(1-\lambda) \cdot K +_{p} \lambda \cdot L = \mathcal{W}\Big( \big((1-\lambda)h_{K}^{p} + \lambda h_{L}^{p}\big)^{1/p} \Big)$$

# The *p*-addition. What about $0 \le p < 1$ ?

### The Wulff-shape

Let  $f: \mathbb{S}^{n-1} \longrightarrow \mathbb{R}^n_{\geq 0}$  be a continuous function. The Wulff-shape of f is the set  $\mathcal{W}(f) = \bigcap_{u \in \mathcal{U}} \left\{ x \in \mathbb{R}^n : \langle x, u \rangle \leq f(u) \right\}.$ 

## Definition

For  $K, L \subset \mathbb{R}^n$  convex bodies containing 0,  $\lambda \in (0, 1)$  and  $0 \le p < 1$ ,

$$(1-\lambda)\cdot K +_{p}\lambda\cdot L = \mathcal{W}\Big(\big((1-\lambda)h_{K}^{p}+\lambda h_{L}^{p}\big)^{1/p}\Big)$$

with

$$(1-\lambda)\cdot K +_0 \lambda \cdot L = \mathcal{W}\left(h_K^{1-\lambda}h_L^{\lambda}\right).$$

# The log-Brunn-Minkowski inequality

Böröczky, Lutwak, Yang, Zhang, 2012:

## Conjecture: The log-Brunn-Minkowski inequality

Let  $K, L \subset \mathbb{R}^n$  be 0-symmetric convex bodies, and let  $\lambda \in (0,1)$ . Then

 $\operatorname{vol}((1-\lambda) \cdot K +_0 \lambda \cdot L) \ge \operatorname{vol}(K)^{1-\lambda} \operatorname{vol}(L)^{\lambda}.$ 

# The log-Brunn-Minkowski inequality

Böröczky, Lutwak, Yang, Zhang, 2012:

## Conjecture: The log-Brunn-Minkowski inequality

Let  $K, L \subset \mathbb{R}^n$  be 0-symmetric convex bodies, and let  $\lambda \in (0,1)$ . Then

 $\operatorname{vol}((1-\lambda)\cdot K+_0\lambda\cdot L)\geq \operatorname{vol}(K)^{1-\lambda}\operatorname{vol}(L)^{\lambda}.$ 

More generally, one can pose the following

## **General conjecture**

Let  $K, L \subset \mathbb{R}^n$  be 0-symmetric convex bodies,  $0 \le p < 1$  and  $\lambda \in (0, 1)$ . Then

$$\operatorname{vol}((1-\lambda)\cdot K+_{p}\lambda\cdot L) \ge ((1-\lambda)\operatorname{vol}(K)^{p/n}+\lambda\operatorname{vol}(L)^{p/n})^{n/p}$$

# A discrete $L_p$ -Brunn-Minkowski inequality ( $p \ge 1$ )

# A discrete $L_p$ -Brunn-Minkowski inequality ( $p \ge 1$ )

## H. C., Lucas, Yepes Nicolás, 2021

Let  $K, L \subset \mathbb{R}^n$  be bounded sets and let  $p \ge 1$ . Then, for all  $\lambda \in (0, 1)$ ,

$$\mathrm{G}_n\Big((1-\lambda)\cdot \mathcal{K}+_p\lambda\cdot L+(-1,1)^n\Big)^{p/n}\geq (1-\lambda)\mathrm{G}_n(\mathcal{K})^{p/n}+\lambda\mathrm{G}_n(L)^{p/n}.$$

The inequality is sharp: the cubes  $[0, m]^n$  gives equality.

# A discrete $L_p$ -Brunn-Minkowski inequality ( $p \ge 1$ )

H. C., Lucas, Yepes Nicolás, 2021

Let  $K, L \subset \mathbb{R}^n$  be bounded sets and let  $p \ge 1$ . Then, for all  $\lambda \in (0, 1)$ ,

$$\mathrm{G}_n\Big((1-\lambda)\cdot \mathcal{K}+_p\lambda\cdot L+(-1,1)^n\Big)^{p/n}\geq (1-\lambda)\mathrm{G}_n(\mathcal{K})^{p/n}+\lambda\mathrm{G}_n(L)^{p/n}.$$

The inequality is sharp: the cubes  $[0, m]^n$  gives equality.

• The case of p = 1 corresponds to the inequality of Iglesias, Yepes Nicolás & Zvavitch, 2020.

# A discrete $L_p$ -Brunn-Minkowski inequality ( $p \ge 1$ )

H. C., Lucas, Yepes Nicolás, 2021 Let  $K, L \subset \mathbb{R}^n$  be bounded sets and let  $p \ge 1$ . Then, for all  $\lambda \in (0, 1)$ ,  $G_n ((1 - \lambda) \cdot K +_p \lambda \cdot L + (-1, 1)^n)^{p/n} \ge (1 - \lambda)G_n(K)^{p/n} + \lambda G_n(L)^{p/n}$ . The inequality is sharp: the cubes  $[0, m]^n$  gives equality.

- The case of p = 1 corresponds to the inequality of Iglesias, Yepes Nicolás & Zvavitch, 2020.
- The discrete *L<sub>p</sub>* Brunn-Minkowski type inequality implies the classical *L<sub>p</sub>*-Brunn-Minkowski inequality for *n*-dimensional compact sets

$$\operatorname{vol}((1-\lambda)\cdot K+_p\lambda\cdot L) \geq \left((1-\lambda)\operatorname{vol}(K)^{p/n}+\lambda\operatorname{vol}(L)^{p/n}\right)^{n/p}.$$

A discrete  $L_p$ -Brunn-Minkowski inequality ( $p \ge 1$ )

 $\mathbf{G}_n \Big( (1-\lambda) \cdot \mathbf{K} +_p \lambda \cdot \mathbf{L} + (-1, 1)^n \Big)^{p/n} \ge (1-\lambda) \mathbf{G}_n(\mathbf{K})^{p/n} + \lambda \mathbf{G}_n(\mathbf{L})^{p/n}$ 

#### A couple of further comments:

The cube (-1, 1)<sup>n</sup> cannot be, in general, reduced by means of a smaller cube (-1, a]<sup>n</sup>, a < 1 (just take K = [0, 1], L = [0, 2] ⊂ ℝ).</li>

A discrete  $L_p$ -Brunn-Minkowski inequality ( $p \ge 1$ )

$$\mathbf{G}_n \Big( (1-\lambda) \cdot \mathbf{K} +_p \lambda \cdot \mathbf{L} + (-1,1)^n \Big)^{p/n} \ge (1-\lambda) \mathbf{G}_n(\mathbf{K})^{p/n} + \lambda \mathbf{G}_n(\mathbf{L})^{p/n}$$

#### A couple of further comments:

- The cube (-1,1)<sup>n</sup> cannot be, in general, reduced by means of a smaller cube (-1, a]<sup>n</sup>, a < 1 (just take K = [0,1], L = [0,2] ⊂ ℝ).</li>
- Recall that  $K +_p L \subset K +_1 L$  for all  $p \ge 1$ , and so

$$\mathbf{G}_n\Big((1-\lambda)\cdot \mathbf{K} +_{\mathbf{p}}\lambda\cdot \mathbf{L} +_{\mathbf{p}}(-1,1)^n\Big)^{\mathbf{p}/n} \ge (1-\lambda)\mathbf{G}_n(\mathbf{K})^{\mathbf{p}/n} + \lambda\mathbf{G}_n(\mathbf{L})^{\mathbf{p}/n}$$

would be a better inequality.

A discrete  $L_p$ -Brunn-Minkowski inequality ( $p \ge 1$ )

$$\mathbf{G}_n \Big( (1-\lambda) \cdot \mathbf{K} +_p \lambda \cdot \mathbf{L} + (-1,1)^n \Big)^{p/n} \ge (1-\lambda) \mathbf{G}_n(\mathbf{K})^{p/n} + \lambda \mathbf{G}_n(\mathbf{L})^{p/n}$$

#### A couple of further comments:

- The cube (-1,1)<sup>n</sup> cannot be, in general, reduced by means of a smaller cube (-1, a]<sup>n</sup>, a < 1 (just take K = [0,1], L = [0,2] ⊂ ℝ).</li>
- Recall that  $K +_p L \subset K +_1 L$  for all  $p \ge 1$ , and so

$$\mathbf{G}_n\Big((1-\lambda)\cdot \mathbf{K} +_p \lambda \cdot \mathbf{L} +_p (-1,1)^n\Big)^{p/n} \ge (1-\lambda)\mathbf{G}_n(\mathbf{K})^{p/n} + \lambda \mathbf{G}_n(\mathbf{L})^{p/n}$$

would be a better inequality.

However, the Minkowski sum of the cube  $(-1,1)^n$  cannot be replaced by its *p*-sum (just take  $K = [0,1], L = [0,2] \subset \mathbb{R}, p = 2$  and  $\lambda = \frac{1}{2}$ .)

# A discrete log-Brunn-Minkowski inequality

## H. C., Lucas, 2021

Let  $K, L \subset \mathbb{R}^n$  be 0-symmetric convex bodies and let  $\lambda \in (0, 1)$ . We write  $C_n = \left[-\frac{1}{2}, \frac{1}{2}\right]^n$ . If either K, L are unconditional convex bodies or n = 2, then

$$\mathrm{G}_n\left((1-\lambda)\cdot\left(K+C_n\right)+_0\lambda\cdot\left(L+C_n\right)+\left(-\frac{1}{2},\frac{1}{2}\right)^n\right)\geq \mathrm{G}_n(K)^{1-\lambda}\mathrm{G}_n(L)^{\lambda}.$$

The inequality is sharp.

# A discrete log-Brunn-Minkowski inequality

## H. C., Lucas, 2021

Let  $K, L \subset \mathbb{R}^n$  be 0-symmetric convex bodies and let  $\lambda \in (0, 1)$ . We write  $C_n = \left[-\frac{1}{2}, \frac{1}{2}\right]^n$ . If either K, L are unconditional convex bodies or n = 2, then

$$\mathrm{G}_n\left((1-\lambda)\cdot\left(K+C_n\right)+_0\lambda\cdot\left(L+C_n\right)+\left(-\frac{1}{2},\frac{1}{2}\right)^n\right)\geq \mathrm{G}_n(K)^{1-\lambda}\mathrm{G}_n(L)^{\lambda}.$$

The inequality is sharp.

It implies the log-Brunn-Minkowski inequality

$$\operatorname{vol}ig((1-\lambda)\cdot {\sf K}+_0\lambda\cdot Lig)\geq \operatorname{vol}({\sf K})^{1-\lambda}\operatorname{vol}(L)^\lambda$$

both for unconditional convex bodies and for n = 2.

## A discrete log-Brunn-Minkowski inequality

$$\mathrm{G}_n\left((1-\lambda)\cdot\left(K+C_n\right)+_0\lambda\cdot\left(L+C_n\right)+\left(-\frac{1}{2},\frac{1}{2}\right)^n\right)\geq \mathrm{G}_n(K)^{1-\lambda}\mathrm{G}_n(L)^{\lambda}.$$

A few further comments:

# A discrete log-Brunn-Minkowski inequality

$$\mathbf{G}_n\left((1-\lambda)\cdot\left(\mathbf{K}+\mathbf{C}_n\right)+_0\lambda\cdot\left(\mathbf{L}+\mathbf{C}_n\right)+\left(-\frac{1}{2},\frac{1}{2}\right)^n\right)\geq\mathbf{G}_n(\mathbf{K})^{1-\lambda}\mathbf{G}_n(\mathbf{L})^{\lambda}.$$

#### A few further comments:

The cube C<sub>n</sub> Minkowski-added to K and L cannot be, in general, avoided; not even summing up a bigger cube (-β, β)<sup>n</sup>, β > <sup>1</sup>/<sub>2</sub>.

# A discrete log-Brunn-Minkowski inequality

$$\mathrm{G}_n\left((1-\lambda)\cdot\left(K+C_n\right)+_0\lambda\cdot\left(L+C_n\right)+\left(-\frac{1}{2},\frac{1}{2}\right)^n\right)\geq \mathrm{G}_n(K)^{1-\lambda}\mathrm{G}_n(L)^{\lambda}.$$

#### A few further comments:

- The cube C<sub>n</sub> Minkowski-added to K and L cannot be, in general, avoided; not even summing up a bigger cube (-β, β)<sup>n</sup>, β > <sup>1</sup>/<sub>2</sub>.
- Similarly, the Minkowski addition of  $\left(-\frac{1}{2}, \frac{1}{2}\right)^n$  is necessary.

# A discrete $L_p$ -Brunn-Minkowski inequality (p < 1)

## H. C., Lucas, 2021

Let  $K, L \subset \mathbb{R}^n$  be unconditional convex bodies and let  $\lambda \in (0, 1)$ . We write  $C_n = \left[-\frac{1}{2}, \frac{1}{2}\right]^n$ . Then, for any 0 ,

$$G_n\left((1-\lambda)\cdot\left(K+C_n\right)+_p\lambda\cdot\left(L+C_n\right)+\left(-\frac{1}{2},\frac{1}{2}\right)^n\right)^{p/r}$$

 $\geq (1-\lambda)\mathrm{G}_n(K)^{p/n} + \lambda \mathrm{G}_n(L)^{p/n}.$ 

It implies the corresponding  $L_p$ -Brunn-Minkowski inequality for unconditional convex bodies.

# The End

# Thank you for your attention!!