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right Cayley graphs of groups

G group and C ⊆ G ⇝ Cay(G,C) (directed) Cayley graph

vertices V = G
arcs A: (a, b) for each c ∈ C such that a · c = b

examples:
Cay(Z6, {1}) Cay(D3, {a, b}) (a2 = b2 = (ab)3 = e)

Cay(D3, {a, ab})

Cay(Z2 × Z3, {(1, 0), (0, 1)})

Obs: Cay(G,C) connected ⇐⇒ < C >= G (from now on always)



Cay(A4, {(123), (234)})

Cay(S4, {(123), (1234)}) Cay(A5, {(124), (12345)})

Beau-



-ti-

Cay(Z2 × Z2n, {(1, 0), (0, 1)})
Cay(Dn, {a, b})

Cay(A5, {(23)(45), (124)}) Cay(A5, {(23)(45), (12345)})

Cay(A4, {(12)(34), (123)})

Cay(S4, {(34), (123)})

Cay(Z2 ×A4, {(1, (12)(34)), (0, (123))})

(a2 = b2 = (ab)3 = e)

Cay(Dn, {a, ab})

Cay(S4, {(34), (1234)})



-ful!
Cay(S4, {(12), (23), (34)})

Cay(Z2 ×Dn, {(1, e), (0, a), (0, b)})

Cay(Z2 × S4, {(0, (12)), (0, (23)), (1, (12)(34))})

Cay(Z2 ×A5, {(1, (12)(35)), (1, (24)(35)), (1, (23)(45))})
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graph induced subgraph of Cayley
graph (Sidon sets)
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Popular color graphs of unbounded χ
let Γk popular color graph with χ = k and order n

⇝ Γk+1:

X set of nk independent vertices

∀Y ⊆ X of n vertices glue Γk

Γk

Y

Γk

Y ′

(following Tutte)

every new cycle has to use some matching twice ⇝ popular color

k-coloring f(Γk+1)⇝ monochromatic set Y ⊆ X of size X
k = n

⇝ only k − 1 colors for Γk...contradiction

⇝ χ(Γk+1) > k

Conj[Babai ’78]: ∃M : every no lonely color graph has χ(Γ) ≤ M

Open special cases:
if Γ can be partitioned into matching cuts, then χ(Γ) ≤ M
if Γ is minimal Cayley graph, then χ(Γ) ≤ M
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Coloring minimal Cayley graphs

Lemma[Babai’78]:
if N ◁ G and C ⊆ G/N then χ(Cay(G,CN)) ≤ χ(Cay(G/N,C)).

Cor[KG-M]: every G has a minimal Cayley with χ ≤ 3.

Lemma[KG-M]: for any minimal Cayley graph we have
χ(Cay(G,C)) ≤ max({χ(Cay(G/ < C − c >, c)) | c ∈ C}.

Thm[KG-M]:
minimal Cayley graphs of Dedekind groups have χ(Cay(G,C)) ≤ 3.

Lemma[KG-M]: for any minimal Cayley graph we have
χ(Cay(G,C)) ≤ χ(Cay(G/Φ(G), C/Φ(G))).

Φ(G) = {x ∈ G | x in no minimal generating set} ◁ G
⇝Frattini group

Φ(G)

Cay(G,C)

Cay(G/Φ(G), C/Φ(G))

homo

if c1Φ(G) · · · ckΦ(G) = cΦ(G) then
c1ϕ1 · · · ckϕk = c
=⇒ < (C − c) ∪ Φ(G) >= G
⇝ contradiction

minimal Cayley, too



Coloring minimal Cayley graphs

Lemma[Babai’78]:
if N ◁ G and C ⊆ G/N then χ(Cay(G,CN)) ≤ χ(Cay(G/N,C)).

Cor[KG-M]: every G has a minimal Cayley with χ ≤ 3.

Lemma[KG-M]: for any minimal Cayley graph we have
χ(Cay(G,C)) ≤ max({χ(Cay(G/ < C − c >, c)) | c ∈ C}.

Thm[KG-M]:
minimal Cayley graphs of Dedekind groups have χ(Cay(G,C)) ≤ 3.

Lemma[KG-M]: for any minimal Cayley graph we have
χ(Cay(G,C)) ≤ χ(Cay(G/Φ(G), C/Φ(G))). minimal Cayley, too

Thm[KG-M]:
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More minimal Cayley graphs

χ(Cay(Z3 ⋊ Z7, {(0, 1), (1, 0)})) = 4



More minimal Cayley graphs

χ(Cay(Z3 ⋊ Z7, {(0, 1), (1, 0)})) = 4

our Thms + Frattini-Lemma + GAP + SageMath
⇝ χ ≤ 4 for all minimal Cayley on up to 223 vertices
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Conj[Babai ’78]: ∃M : every minimal Cayley graph has χ(Γ) ≤ M

M ≥ 4

Conj[Babai ’78]: ∃M : every semiminimal Cayley graph has χ(Γ) ≤ M

⇝M ≥ 7

How about semiminimal Cayley graphs of abelian groups?

Conj[Babai ’96]:∀ε > 0∃ minimal Cayley graph Γ such that α(Γ) ≤ ε|Γ|.

Cay(Q32, C) = K2⊠

How about graphs that can be partitioned into matching cuts?


