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Outline

The main object

Three viewpoints:

� combinatorial

� algebraic

� geometrical → curve zeta functions → not today

Fragestellungen and exemplary results

Fragestellung 1. Commutative algebra

Fragestellung 2. Plane curve singularities
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Main object

I Formal power series ↔ Q ∈ Z[[t1, . . . , tr ]]

r = 1 : Q(t) =
∑
n∈N

ant
n

r > 1 : Q(t) =
∑
n∈Nr

ant
n, tn := tn11 · · · t

nr
r

Coefficients an can be endowed with an “interpretation”.

I Historical milestones:

F. S. Macaulay (1913), A. Ostrowski (1922), . . ., I. Niven (1969)

I Formal Laurent series ←→ Q ∈ Z[[t1, . . . , tr ]][t−11 , . . . , t−1r ]
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Coefficients an with combinatorial meaning

Assume S ⊆ N := {0, 1, . . .} is a numerical semigroup, i.e.

1. 0 ∈ S

2. m, n ∈ S =⇒ m + n ∈ S

3. There exists a conductor c i.e. [c −→] ∈ S

For every n ∈ N define

an =

{
1, if n ∈ S ;

0, if n /∈ S .

The generating function of S is then

PS(t) =
∑
n∈N

ant
n =

∑
n∈S

tn = . . . =
ΛS(t)

1− t

Note: Numerical semigroups occur in algebraic geometry e.g. as

invariants of (plane) curve singularities, as we’ll see.
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Coin change problem: We have coins e.g. of 3 and 4. Set

an = #(ways of returning a value of n with coins of 3 and 4).

Consider S = 3N + 4N = 〈3, 4〉 so that

an =

{
≥ 1, if n ∈ S ;

0, if n /∈ S .

This leads to the generating function∑
n∈N

ant
n = . . . =

1

1− t3
· 1

1− t4

Observe that, for S = N we get 1 + t + t2 + t3 + · · · = 1
1−t .

This viewpoint can be thought in the language of commutative

algebra.
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Coefficients an with algebraic meaning

Let K be a field. Consider the polynomial ring R = K[X ,Y ]

graded by deg(X ) = 1, deg(Y ) = 1.

R can be decomposed by the grading as

R =
∞⊕
n=0

Rn = K︸︷︷︸
R0

⊕ (KX ⊕KY︸ ︷︷ ︸
R1

)⊕· · ·⊕(span of monomials of deg i︸ ︷︷ ︸
Ri

)⊕· · ·

Define an = dimK Rn. The generating series (Hilbert series of R) is

HR(t) =
∑
n∈N

ant
n = . . . =

1

1− t
· 1

1− t
.

If R is endowed with the grading deg(X ) = 3, deg(Y ) = 4, then

HR(t) =
∑
n∈N

ant
n = . . . =

1

1− t3
· 1

1− t4
.

This can be set in a more generality. 5



Coefficients an with algebraic meaning

Let R := k[X1, . . . ,Xn] be a polynomial ring endowed with a

grading, typically

� standard-Z-grading, i.e., degXi = 1

� nonstandard-Z-grading (positively graded)

� Zr -grading (multigrading)

Let 0 6= M =
⊕

`M` be a finitely generated graded R-module,

with Hilbert series

HM(t) =
∑
`∈Z

(dimk M`)t
` ∈ Z[[t]][t−1]

Series without negative coefficients: nonnegative series.
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Fragestellung 1: Commutative algebra

Let M 6= 0 be a finitely generated graded module over a graded

polynomial ring R = K[X1,X2, . . . ,Xn].

Let HM be the Hilbert series of M.

Note: arbitrary Nr -grading, r ≥ 1

Question 1.

(a) Since HM is a rational function with ”well understood”

denominator (after Hilbert-Serre), which (Laurent) polynomials

appear as potential numerators?

(b) Which series are Hilbert series of graded modules over

polynomial rings?

Question 2. Which is the maximal depth of a finitely generated

module M with Hilbert series HM?
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The answers may depend of the grading. For a Zr -grading we have

Theorem [—, Katthän, Uliczka]

A formal Laurent series H is the Hilbert series of a finitely

generated R-module if and only if it can be written in the form

H =
∑
I⊆[r ]

QI∏
i∈I (1− tdeg(Xi ))

for Laurent polynomials QI ∈ Z[[t±11 , . . . , t±1r ]] with nonnegative

coefficients.

This is called a Hilbert decomposition of H.

� Useful for showing that a given Laurent series is a Hilbert series:

construct a Hilbert decomposition.

� Difficult to show that a given series is not a Hilbert series.
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� The coeff’s of H behave as a polynomial function from some

place on: Hilbert polynomial P(H) of H.

� For I ⊆ [r ], set NI := {
∑

i∈I ciei : ci ∈ N}.

� Def: Let H =
∑

a ∈ Zrhat
a ∈ Z[[t]][t−1]. For I ⊆ [r ] and u ∈ Zr

we define the restriction of H to u + NI as

H |I ,u:=
∑
a∈NI

hu+at
a ∈ Z[[ti ]][t

−1
i ]i∈I .

� Def: Let p ∈ Z[W1, . . . ,Wr ] be a polynomial.

→ A monomial W b of p is said to be extremal if it doesn’t divide

any other monomial.

→ We say that p has positive extremal coefficients if the

coefficient of every extremal monomial of p is positive.
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Let mi be the number of variables of degree ei in R.

Theorem [—, Katthän, Uliczka]

For H ∈ Z[[t]][t−1], TFAE:

1. There exists a finit. generated graded R-module M with

HM = H.

2. H satisfies:

(a) H ·
∏r

i=1(1− ti )
mi is a polynomial;

(b) for every u ∈ Zr and every I ⊆ [r ], the Hilbert polynomial

P
(
H |I ,u

)
has positive extremal coefficients.

Example. Let n = 2, m1 = m2 = 3. Consider the series

H =
∑
i≥0

∑
j≥0

(i − j)2t i1t
j
2 =

t1t
2
2 + t21 t2 + t21 − 6t1t2 + t22 + t1 + t2

(1− t1)3(1− t2)3

Look at P(H) = (i − j)2 = i2−2ij + j2.
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Let K[X ,Y ] be N-graded by deg(X ) = α,deg(X ) = β coprime.

Let M be a f.g. graded R-module with Hilbert series HM . Define

Hdepth(HM) = sup
{
depth(N) : N f.g. gr. R-module with HN = HM

}
.

Theorem [—, Uliczka]

Write HM(t) =
∑

n∈Z hnt
n. TFAE:

1. Hdepth(HM) > 0

2. For any n ∈ Z we have∑
i∈I

hn+i ≤
∑
j∈J

hn+j

where
� I is given by all minimal generator systems of “semimodules”

of 〈α, β〉 containing 0

� J consists of the minimal generators of the corresponding

syzygy semimodule of I
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Fragestellung 2: Plane curve singularities

Consider a plane curve singularity C :{f = 0} given by an

analytically irreducible series f := f (x , y).

We parametrize f by a map C→ C2 with

τ 7→ (x(τ), y(τ)),

where x(τ), y(τ) ∈ C[[τ ]] and x(0) = y(0) = 0. The set

SC =
{
ordτ

(
g(x(τ), y(τ))

)
: g ∈ C[[x , y ]], g - f

}
is the value semigroup associated to C .

Independence of parametrization. Write

ν(g) := ordτ (g(x(τ), y(τ))).

For n ∈ N, define J(n) := {g ∈ C[[x , y ]]/(f ) : ν(g) ≥ n}.
12



For any n ∈ N we have

J(n) ⊇ J(n + 1) for any n ∈ N

n ∈ SC ⇐⇒ dimC

(
J(n)/J(n + 1)

)
= 1.

If we associate a generating function to the filtration given by the

ideals J(n) by doing

an = dimC

(
J(n)/J(n + 1)

)
,

we get the Poincaré series associated to C as PC (t) =
∑
n∈N

ant
n.

This idea goes back to Campillo, Delgado, Kiyek (’94).

Observe: PC (t) coincides with PS(t).

Idea: PC is a way of “ counting” or “measuring” the elements g in

the local ring of the singularity with fixed value v(g) = n.
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If f = f1 · · · fr is reducible and reduced, then every branch

Ci : {fi = 0} yields a valuation νi , and for C = ∪ri=1Ci we define

SC :=
{
ν(g):=

(
ν1(g), . . . , νr (g)

)
∈ Zr : g ∈ C[[x , y ]], g - f

}
.

Which kind of subsemigroup of (Nr ,+) is this S = SC? Delgado:

(P1) 0 ∈ S .

(P2) For m = (m1, . . . ,mr ), n = (n1, . . . , nr ) ∈ S ,

inf(m, n) = (min(m1, n1), . . . ,min(mr , nr )) ∈ S .

(P3) For m, n ∈ S s.th. ∃ i0 with mi0 = ni0 , then ∃ z ∈ S satisfying

zk ≥ min(mk , nk) for all k ;

z` = min(m`, n`) if m` 6= n`, and

zi0 > mi0 = ni0 .

(P4) There exists the minimum of the set S \ {0}.
(P5) S has a conductor c := min{z ∈ S : z + Nr ⊆ S}.
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Example: C : {f (x , y) = (y4− 2x3y2− 4x5y + x6− x7)(y2− x3)}.

0 10 20 30

0

5

10

15

“maximals”

Question. How to define and compute PC (t1, . . . , tr ) or PS(t)?
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Answer (Campillo, Delgado, Gusein-Zade):

For v ∈ Zr , the ideals

J(v) := {g ∈ C[[x , y ]]/(f ) : ν(g) ≥ v},

define a multi-index filtration, since

J(v) ⊇ J(w) if and only if v ≤ w

for the usual partial ordering “≤” in Zr .

Notation: 1 = (1, 1, . . . , 1), ei = (0, . . . , 0,
i

1, 0, . . . , 0), 0 = (0, 0, . . . , 0)

A way to count dimensions c(v) := J(v)/J(v + 1):

L(t) =
∑
v∈Zr

c(v) · tv ∈ Z[[t±11 , . . . , t±1r ]].
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Consider the power series in t

L(t)
r∏

i=1

(ti − 1) =: P ′(t) =
∑
v∈Zr

p′(v)tv

with eJ =
∑

j∈J ej for J ⊆ [r ] and

p′(v) = (−1)r
r∑

j=0

(−1)j
∑

1≤i1<···<ij≤r
c(v − ei1 − . . .− eir )

= (−1)r
∑
J⊆[r ]

(−1)|J|c(v − eJ)

Set i ∈ [r ] and c(v ; i) := dim J(v)/J(v + ei ), then

c(v ; i) = 1 ⇐⇒ ∃w ∈ S with wi = vi , wj ≥ vj ∀j ∈ [r ]

17



Fix v ∈ Zr , i ∈ [r ]. Define

pi (v) = (−1)r−1
∑

J⊆[r ]\{i}

(−1)|J|c(v + 1− ei − eJ ; i)

= (−1)r
∑

i∈L⊆[r ]

(−1)|L|c(v + 1− eL; i).

and

Pi (t) =
∑
v∈Zr

pi (v)tv .

Theorem

We have p′(v) = −pi (v) + pi (v − 1) and

(t1t2 · · · tr − 1)Pi (t) = P ′(t)

Hence Pi (t) doesn’t depend on i : we write P(t) =
∑

v∈Zr p(v)tv

and say Poincaré series of C . If r > 1, then P(t) is a polynomial.
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P(t) depends only on S . Moreover

Theorem

(1) If v /∈ S , then p(v) = 0.

(2) If v ∈ S is not maximal, then p(v) = 0.

(3) If v ∈ S is absolute maximal, then p(v) = 1.

(4) If v ∈ S is relative maximal, then p(v) = (−1)r .

Proof

I Fix r and consider any {i1, . . . , ir−1} ⊆ [r − 1], then

0 ≤ c(v + 1− er ; r) ≤ c(v + 1− er − e1; r) ≤ · · · ≤ c(v ; r) ≤ 1.

• If c(v + 1− er ; r) = 1, all the terms in the sum below are 1:

pr (v) = (−1)r−1
r−1∑
j=0

(−1)j
∑

1≤i1<···<ij≤r−1
c(v + 1− ei1 − · · · − eij ; r),

therefore

pr (v) = (−1)r−1
r−1∑
j=0

(−1)j
(
r − 1

j

)
= (−1)r−1(1− 1)r−1 = 0.
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• If c(v ; r) = 0, all terms involved in the above expression are 0,

hence pr (v) = p(v) = 0.

(1) If v /∈ S , then ∃ i ∈ [r ] such that c(v ; i) = 0, hence

pi (v) = p(v) = 0.

(2) If v ∈ S , but not maximal, then ∃ i ∈ [r ] such that

c(v + 1− ei ; i) = 1; therefore p(v) = pi (v) = 0.

(3) If v ∈ S absolute maximal, then c(v ; r) = 1 and, for every

J ⊆ [r ] \ {r}, we have c(v + 1− er − eJ ; r) = 0. This implies

p(v) = (−1)r−1(−1)r−1 = 1.

(4) If v ∈ S relative maximal, then c(v + 1− er ; r) = 0 and, for

every ∅ 6= J ⊆ [r − 1], we have c(v + 1− er − eJ ; r) = 1; hence

p(v) = (−1)r−1
r−1∑
j=1

(−1)j
(
r − 1

j

)
= (−1)r .
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The issue lies on those v ∈ S neither relative nor absolute maximal

*but* maximal.

(!) P(t) is a polynomial for r > 1.

If r = 2, then “relative maximal = absolute maximal = maximal”

for S , and

P(t1, t2) =
∑

(v1,v2) abs.max.

tv11 tv22 .

If r = 3, then there are only absolute and relative maximal

elements of S so that

P(t1, t2, t3) =
∑

(v1,v2,v3) abs.max.

tv11 tv22 tv33 −
∑

(v1,v2,v3) rel.max.

tv11 tv22 tv33 .
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Example

For C : {f (x , y) = (y4 − 2x3y2 − 4x5y + x6 − x7)(y2 − x3)}, we

have

P(t1, t2) = 1 + t41 t
2
2 + t61 t

3
2 + t81 t

4
2 + t101 t52 + t121 t62 + t141 t72 + t161 t82

+ t181 t92 + t201 t102 + t221 t112 + t241 t122 + t281 t142

=
(t121 t62 − 1)(t261 t132 − 1)

(t41 t
2
2 − 1)(t61 t

3
2 − 1)
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