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The main object

Three viewpoints:

© combinatorial

© algebraic

© geometrical — curve zeta functions — not today
Fragestellungen and exemplary results

Fragestellung 1. Commutative algebra
Fragestellung 2. Plane curve singularities



» Formal power series <> Q€ Z[ty,...,t]

r=1: Q(t):Za,,t”

neN
r>1:  Qt) = Z apt®, =M.
neN’
Coefficients a, can be endowed with an “interpretation”.
» Historical milestones:

F. S. Macaulay (1913), A. Ostrowski (1922), ..., I. Niven (1969)
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Coefficients a, with combinatorial meaning

Assume S C N := {0,1,...} is a numerical semigroup, i.e.

1.0eS
2. mneS= m+nes
3. There exists a conductor c i.e. [c —] € S

For every n € N define

1, ifnes;
an =
0,ifn¢s.

The generating function of S is then

Ps(t) =Y ant' =3 7= = sl

neN nes

Note: Numerical semigroups occur in algebraic geometry e.g. as
invariants of (plane) curve singularities, as we'll see.



Coin change problem: We have coins e.g. of 3 and 4. Set
ap = #(ways of returning a value of n with coins of 3 and 4).

Consider S = 3N + 4N = (3,4) so that

, >1,ifnes;
") o0, ifn¢s.

This leads to the generating function

1 1

n __ .
Dot = =i i
neN
Observe that, forS:Nweget1+t+t2+t3—|—---:ﬁ.

This viewpoint can be thought in the language of commutative
algebra.



Coefficients a, with algebraic meaning

Let K be a field. Consider the polynomial ring R = K[X, Y]
graded by deg(X) = 1,deg(Y) = 1.

R can be decomposed by the grading as

R = @ R, = f KX &) KY) D- - @(span of monomials of deg I)@ ..
0 R] R,'

Define a, = dimg R,. The generating series (Hilbert series of R) is

1 1
= R
2 1—t 1—t
neN
If R is endowed with the grading deg(X) = 3,deg(Y) = 4, then
1 1
:Zantn::]-_it?)m
neN

This can be set in a more generality. 5



Coefficients a, with algebraic meaning

Let R := k[Xi,...,X,] be a polynomial ring endowed with a
grading, typically

¢ standard-Z-grading, i.e., deg X; = 1

© nonstandard-Z-grading (positively graded)

o Z"-grading (multigrading)

Let 0 # M = @, M, be a finitely generated graded R-module,
with Hilbert series
Hu(t) = (dimi M)t" € Z[¢][t ]
LeZ

Series without negative coefficients: nonnegative series.




Fragestellung 1: Commutative algebra

Let M # 0 be a finitely generated graded module over a graded
polynomial ring R = K[ X1, X2, ..., Xy].

Let Hys be the Hilbert series of M.
Note: arbitrary N"-grading, r > 1

Question 1.

(a) Since Hy is a rational function with "well understood”
denominator (after Hilbert-Serre), which (Laurent) polynomials
appear as potential numerators?

(b) Which series are Hilbert series of graded modules over

polynomial rings?

Question 2. Which is the maximal depth of a finitely generated
module M with Hilbert series Hy,?



The answers may depend of the grading. For a Z"-grading we have

Theorem [—, Katthan, Uliczka]
A formal Laurent series H is the Hilbert series of a finitely
generated R-module if and only if it can be written in the form

Qs

= (1 — tdes(X)

1C]r] e

sl
]

for Laurent polynomials Q; € Z[[tlil, e ] with nonnegative

coefficients.

This is called a Hilbert decomposition of H.

o Useful for showing that a given Laurent series is a Hilbert series:
construct a Hilbert decomposition.

o Difficult to show that a given series is not a Hilbert series.



© The coeff's of H behave as a polynomial function from some
place on: Hilbert polynomial P(H) of H.

o For I C[r], set N := {3, ciej : ¢; € N},

o Def: Let H=73_, € Z"h,t2 € Z[t][t*]. For | C[r] and u € Z"

we define the restriction of H to u + N/ as

Hliy= > husat® € Z[t][t Nies-
acN/
o Def: Let p € Z[W, ..., W,] be a polynomial.

— A monomial W/” of p is said to be extremal if it doesn't divide
any other monomial.

— We say that p has positive extremal coefficients if the
coefficient of every extremal monomial of p is positive.



Let m; be the number of variables of degree ¢; in R.

Theorem [—, Katthin, Uliczka]
For H € Z[t][t™!], TFAE:

1. There exists a finit. generated graded R-module M with
Hy = H.
2. H satisfies:
(@) H-TI_;(1 — t;)™ is a polynomial;
(b) for every u € Z" and every I C [r], the Hilbert polynomial
P(H lo.m ) has positive extremal coefficients.
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Let m; be the number of variables of degree ¢; in R.

Theorem [—, Katthin, Uliczka]
For H € Z[t][t™!], TFAE:

1. There exists a finit. generated graded R-module M with
Hy = H.
2. H satisfies:
(@) H-TI_;(1 — t;)™ is a polynomial;
(b) for every u € Z" and every I C [r], the Hilbert polynomial
P(H lo.m ) has positive extremal coefficients.

Example. Let n =2, my = mp = 3. Consider the series

B i bt th4t-6hb+tit+th+b
H=) > (i-jPtg= (1— t1)3(1 - t)3
i>0 j>0
Look at P(H) = (i — j)? = i?—2ij + j2.
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Let K[X, Y] be N-graded by deg(X) = a, deg(X) = 8 coprime.
Let M be a f.g. graded R-module with Hilbert series Hp;. Define
Hdepth(Hp) = sup {depth(N) : N f.g. gr. R-module with Hy = HM}.

Theorem [—, Uliczka]

Write Hu(t) = Y2 ,ez hnt". TFAE:

1. Hdepth(Hy) >0
2. For any n € Z we have

Z hn+i < Z hn+j
icl jeJ
where
o | is given by all minimal generator systems of “semimodules”
of («, B) containing 0
¢ J consists of the minimal generators of the corresponding

syzygy semimodule of /
11



Fragestellung 2: Plane curve singularities

Consider a plane curve singularity C:{f = 0} given by an
analytically irreducible series f := f(x, y).

We parametrize f by a map C — C? with
7= (x(7),y(7)),
where x(7), y(r) € C[r] and x(0) = y(0) = 0. The set
Sc = {ord.(g(x(7),y(7))) : g € Clx,¥], g1}

is the value semigroup associated to C.
Independence of parametrization. Write
v(g) := ord,(g(x(7),y(7)))-

For n € N, define J(n) :={g € C[x,y]/(f) : v(g) > n}.

12



For any n € N we have
J(n) D J(n+1) forany ne N
neSc < dimc (J(n)/J(n - 1)) — 1,
If we associate a generating function to the filtration given by the
ideals J(n) by doing
a, = dimg (J(n)/J(n + 1)),

we get the Poincaré series associated to C as Pc(t) = Z ant”.
neN
This idea goes back to Campillo, Delgado, Kiyek ('94).

Observe: Pc(t) coincides with Ps(t).

Idea: Pc is a way of " counting” or “measuring” the elements g in
the local ring of the singularity with fixed value v(g) = n.

13



If f =+f---f is reducible and reduced, then every branch
Ci : {fi = 0} yields a valuation v;, and for C = U;_; C; we define

Sc = {Z(g):: (yl(g), A Vr(g)) €l :geClx,y]l,g1 f}.
Which kind of subsemigroup of (N",+) is this S = S¢? Delgado:

(P1) 0€S.
(P2) Form=(my,...,m,),n=(ny,...,n) €S,

inf(m, n) = (min(my, ny), ..., min(m,, n,)) € S.

(P3) For m,n € S s.th. 3 ip with mj; = nj,, then 3 z € S satisfying
z > min(my, ng) for all k;
zy = min(my, ng) if my # ny, and
Zjy > Mjy = nj,.
(P4) There exists the minimum of the set S\ {0}.
(P5) S has a conductor ¢ :=min{z € S:z+N" C S}.

14



Example: C: {f(x,y) = (y* — 2x3y? —4x5y + x® — x")(y? — x3)}.
I I I
15 é .
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| | | |
0 10 20 30
Question. How to define and compute Pc(t1,...,t,) or Ps(t)?

ii5)



Answer (Campillo, Delgado, Gusein-Zade):

For v € Z", the ideals
J(v) = {g € Clx,yI/(F) : v(g) > v},
define a multi-index filtration, since
J(v) D J(w) ifandonlyif v <w

for the usual partial ordering “<" in Z".

Notation: 1 =(1,1,...,1), ¢ =(0,...,0,1,0,...,0), 0= (0,0,...

Lt)= ) clv)-t* e Z[5,....£7].

16



Consider the power series in t

r

L[t - =P)=> Pt~

i=1 vezr

with e, = 5. e for J C[r] and

P =11 Y clv-e—...m

j=0 1< <--<ij<r
=(-1)" Y (—)Hle(v - &)
JC[r]

Set i € [r] and c(v; i) :=dim J(v)/J(v + €;), then

ei,)

c(v;i)=1 < IweSwithw;=v;, w; >v; Vje]r]

17



Fix ve Z", i € [r]. Define

pi(v) = (-1 > (-D)Mle(v+1—e —epid)

JC\{i}
=(-1)" Y (-D)He(v+1—esi).
ieLC][r]
and
[ = Z pi(v)t“.
VEZ"
Theorem

We have p'(v) = —pi(v) + pi(v — 1) and
(tito---t, — 1)Pi(t) = P'(2)

Hence P;(t) doesn't depend on i: we write P(t) = ., p(v)t*
and say Poincar€ series of C. If r > 1, then P(t) is a polynomial.

18



P(t) depends only on S. Moreover
Theorem

(1) If v¢ S, then p(v) = 0.

(2) If v € S is not maximal, then p(v) = 0.
(3) If v € S is absolute maximal, then p(v) = 1.
(4) If v € S is relative maximal, then p(v) = (—1)".
Proof
» Fix r and consider any {i,...,i,—1} C [r — 1], then

0<c(v+l—-e;r)<clv+l—e—e;r)<---<c(v;r) <L
e lf c(v+1—e,r)=1, all the terms in the sum below are 1:

r—1
pr(v) = (-1 (-1Y > G e S e
=0

1<h<--<ij<r—1

therefore

r—1
(W) =) () = e -y =0
” > ()

19



o If c(v;r) =0, all terms involved in the above expression are 0,
hence p(v) = p(v) =0.

(1) If v ¢ S, then 3 i € [r] such that c(v; i) =0, hence
pi(v) = p(v) = 0.

20



o If c(v;r) =0, all terms involved in the above expression are 0,
hence p(v) = p(v) =0.

(1) If v ¢ S, then 3 i € [r] such that c(v; i) =0, hence
pi(v) = p(v) = 0.

(2) If v € S, but not maximal, then 3 i € [r] such that
c(v+1— ej; i) = 1; therefore p(v) = pj(v) = 0.
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o If c(v;r) =0, all terms involved in the above expression are 0,

hence p(v) = p(v) =0.

(1) If v ¢ S, then 3 i € [r] such that c(v; i) =0, hence
pi(v) = p(v) = 0.

(2) If v € S, but not maximal, then 3 i € [r] such that
c(v+1— ej; i) = 1; therefore p(v) = pj(v) = 0.

(3) If v € S absolute maximal, then ¢(v; r) =1 and, for every
JC[r]\ {r}, we have c(v +1— e — ej;r) = 0. This implies

pv) = (-1 (-1 =1

(4) If v € S relative maximal, then ¢(v+ 1 — e;r) =0 and, for
every ) £ J C [r — 1], we have c(v+1— e —ey;r) = 1; hence

r—1
V:_r—l _'r_]':_r
)= (-1 3 1Y<J.> (-1

20



The issue lies on those v € S neither relative nor absolute maximal

*but* maximal.
(') P(t) is a polynomial for r > 1.

If r =2, then “relative maximal = absolute maximal = maximal”
for S, and

P(t, &) = Z BAE,

(vi,v2) abs.max.

If r =3, then there are only absolute and relative maximal
elements of S so that

P(t1, to, t3) = > A2 > AR,

(vi,v2,v3) abs.max. (vi,va,v3) rel.max.

21



Example

For C: {f(x,y) = (y* — 2x3y? — 4x®y + x5 — x")(y? — x3)}, we

have

P(ty, ) = 1+ t1t3 + 283 + 1315 + 18 + t1%65 + t1%¢] + 3048
+ 1885 + 20410 4 122621 4 24432 4 128124

(2 1y — )
(65— 1)(£58 — 1)
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