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             segments

edge weights: Euclidean length 
                          of segment

Our object: 
A realization of a graph in some Euclidean space 

Plane geometric graph

No crossings between edges
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             segments
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                          of segment

The LOCUS of a plane geometric graph

No crossings between edges

Our object: 
A realization of a graph in some Euclidean space 
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by adding edges

distances dilation 
(max detour between vertices)

diameter 
(max distance between vertices)

Adding one edge/dilation:

Farshi et al., 2004 
plane Euclidean graphs in R   
Wulff-Nilsen, 2010
graphs embedded in a metric space 

d

Adding one edge/diameter:

Goal: “improve” a graph

Optimal k-augmentation problem: 

Insert k additional edges to minimize some measure on the resulting graph

Adding k edges/dilation:

Gudmundsson and Wong, 2022 
graphs embedded in a metric space 

Grobe et al., 2015 (trees embedded in a metric space)
Wang, 2017 (paths embedded in a metric space)
Biló, 2018 (trees embedded in a metric space) 
Wang and Zhao, 2021 (unicycle graphs and 
                                    trees embedded in a metric space)

Adding k edges/diameter:

Biló et al. , 2023 (trees embedded in a metric space) 
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by adding edges

by adding segments 
connecting any two points

Reduce/minimize:

continuous diameter 
(max distance between any two points)

Goal: “improve” a graph by adding edges

the locus of a graph

What happens 
with crossings?



by adding segments 
connecting any two points

ignore crossings

Highway model

Each crossing creates a new vertex

Planar model

Goal: “improve” a graph
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Highway model vs. Planar model

Reduce: continuous diameter  (max distance between any two points)

Highway model

1

Planar model

diameter: 3.5

diameter improvedNo single segment 
improves diameter

1

diameter: 4



Our problem: 
find optimal shortcuts in the planar model

Given a graph, find k segments such that in the 
resulting graph the continuous diameter is minimum 
(over all posible segments)
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Our problem: 
find optimal shortcuts in the planar model

Given a graph, find k segments such that in the 
resulting graph the continuous diameter is minimum 
(over all posible segments)



Some results Minimize: continuous diameter 
 

Highway model

De Carufel et al. (2016): 
geometric paths (k=1), 
geometric convex cycles (k=2)

De Carufel et al. (2017): 
geometric trees (k=1)

Bae et al. (2017): 
circles (k≤7)

Optimal set of k shortcuts:

Planar model

Yang (2013): certain types of paths

Approximation algorithms-optimal shortcut (k=1)

G., Márquez, Rodríguez, Silveira (2019)

General geometric graphs-optimal shortcut (k=1)

Oh and Ahn (2016): 
weighted trees (k=1)



Minimize: continuous diameter 
 

Planar model

G., Márquez, Rodríguez, Silveira (2019)

General geometric graphs-optimal shortcut (k=1)

Some results

• Computation of optimal shortcut (k=1)  is polynomial 

• Approximation possible via discretization

General graphs

• Compute diameter after inserting segment Θ(n)

• Compute optimal horizontal shortcut O(n²logn)

• Compute optimal simple shortcut O(n²)
Paths
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How fast can an optimal shortcut in general graphs be computed? 

Planar model

General geometric graphs-optimal shortcut (k=1)

G., Márquez, Rodríguez, Silveira (2019)
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Some results

in paths? (any orientation) 

in trees? 

How fast can an optimal shortcut in general graphs be computed? 

Planar model

General geometric graphs-optimal shortcut (k=1)

G., Márquez, Rodríguez, Silveira (2019)



Minimize: continuous diameter 
 

Some results

in paths? (any orientation) 

in trees? 

Existence of shortcuts in general geometric graphs

G., Klute, Márquez, Parada, Silveira (2023)

• It is 3SUM-hard to decide if a graph admits a shortcut (k=1)

• It is NP-complete and APX-hard to decide if a graph admits a 
set of k shortcuts

How fast can an optimal shortcut in general graphs be computed? 

Planar model

General geometric graphs-optimal shortcut (k=1)

G., Márquez, Rodríguez, Silveira (2019)
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Paths: not so simple

Quadratic number 
of diametral pairs

Highway model: no crossings

At most 3 
diametral pairs

Planar model



Computation of the continuous diameter

(G., Márquez, Silveira, 2018 and 2023): the continuous diameter 
of a plane geometric graph and the continuous mean distance of 
a  plane weighted graph can be computed in quadratic time.
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Computation of the continuous diameter

Cabello (2017): Subquadratic algorithms for the diameter and 
the sum of pairwise distances in planar graphs

SUBQUADRATIC???
graphs with bounded treewidth

(G., Márquez, Silveira, 2018 and 2023): the continuous diameter 
of a plane geometric graph and the continuous mean distance of 
a  plane weighted graph can be computed in quadratic time.



Other type of problem: 
Borsuk number

Is  it true that every set in R    can be partitioned into n + 1 closed (sub)sets of 
smaller diameter?

Answered in the positive for:
n = 2,  Borsuk (1932)
n = 3,  Perkal (1947)
All n for smooth convex bodies, Hadwiger (1946)
All n for centrally-symmetric bodies, Riesling (1971)
All n for bodies of revolution, Dekster (1995)

The general answer is NO, Kahn and Kalai (1993)
Their construction shows that n + 1 pieces do not suffice for n > 2014

n
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Borsuk number: #pieces needed to obtain 
max{diameters} < original diameter 



Borsuk number
minimum number of connected components to obtain (after cutting by lines) :

max{continuous diameters} < original continuous diameter 
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Other type of problem: 
Borsuk number

Borsuk number
minimum number of connected components to obtain (after cutting by lines) :

max{continuous diameters} < original continuous diameter 
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