Diámetro continuo en grafos

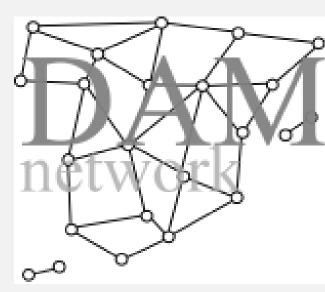
Delia Garijo Universidad de Sevilla

Sesión Especial de Matemática Discreta y Algorítmica Congreso Bienal de la RSME 2024

Diámetro continuo en grafos

Delia Garijo

Universidad de Sevilla



Colaboraciones con:

Alberto Márquez | U. Sevilla

Fabian Klute | UPC

Irene Parada | UPC

Rodrigo I. Silveira | UPC

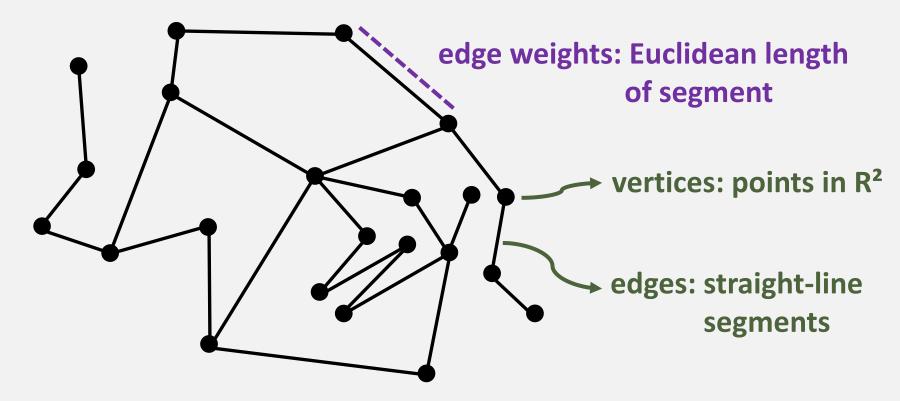
Sergio Cabello | U. Ljubljana

José Cáceres | U. Almería

Natalia Rodríguez | U. Buenos Aires

Sesión Especial de Matemática Discreta y Algorítmica Congreso Bienal de la RSME 2024

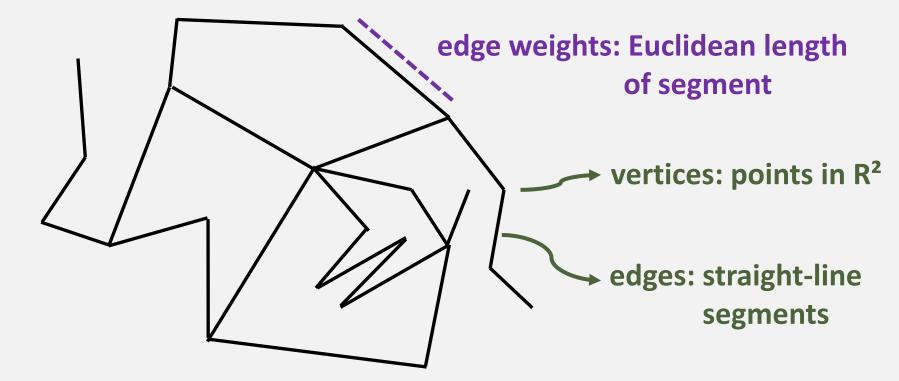
Our object: A realization of a graph in some Euclidean space



No crossings between edges

Plane geometric graph

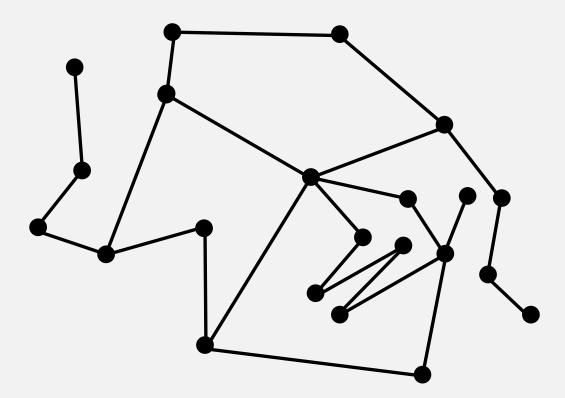
Our object: A realization of a graph in some Euclidean space

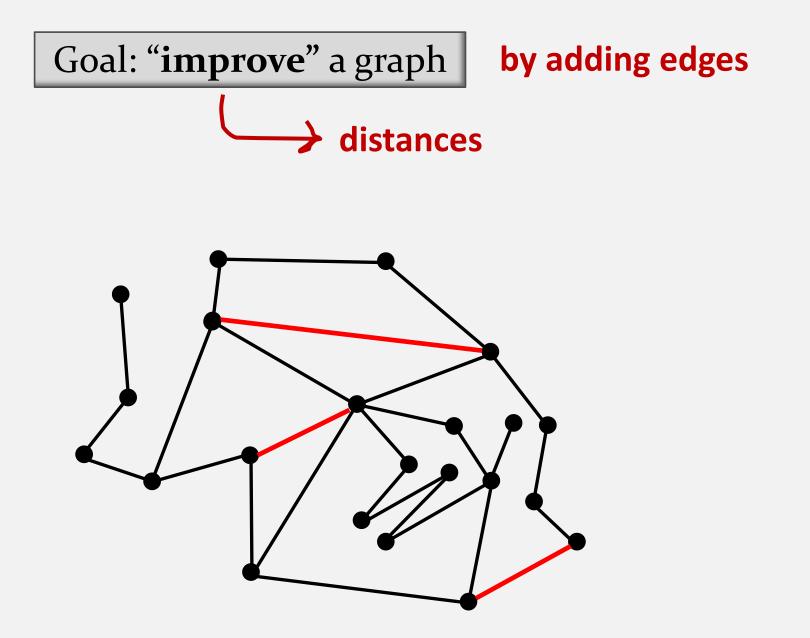


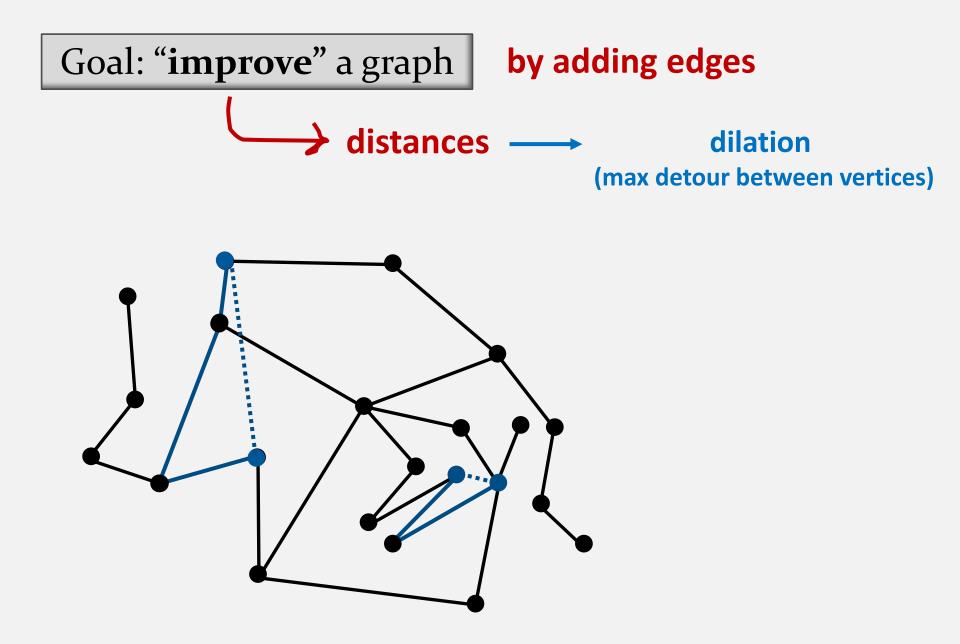
No crossings between edges

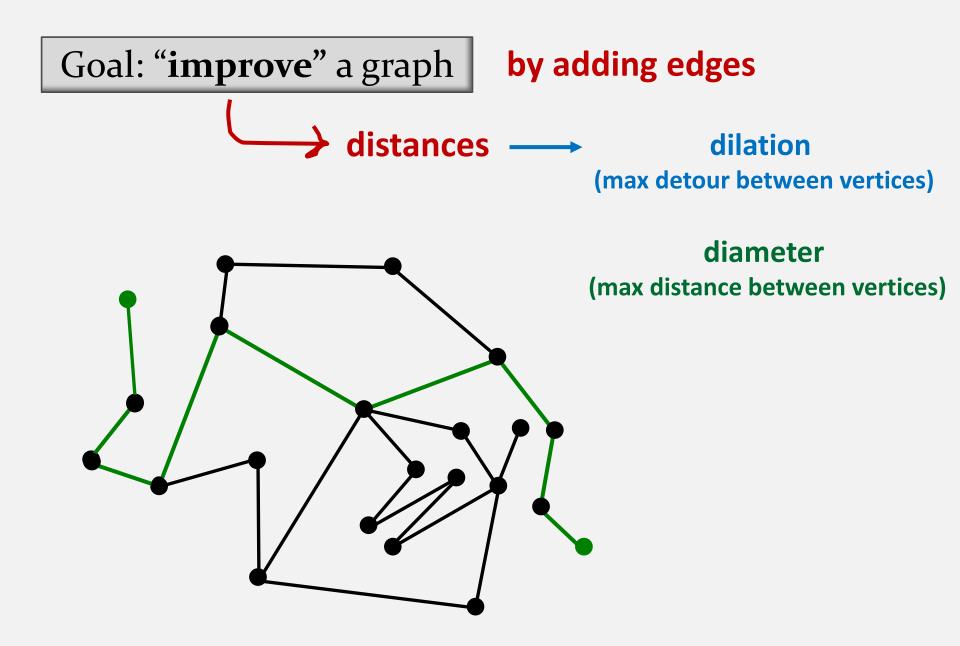
The **LOCUS** of a plane geometric graph

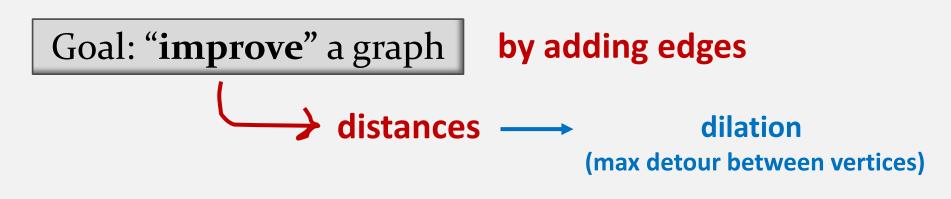
Goal: "improve" a graph









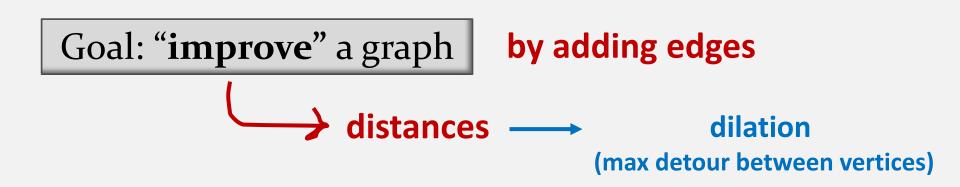


Optimal k-augmentation problem:

diameter

(max distance between vertices)

Insert k additional edges to minimize some measure on the resulting graph



Optimal k-augmentation problem:

(max distance between vertices)

diameter

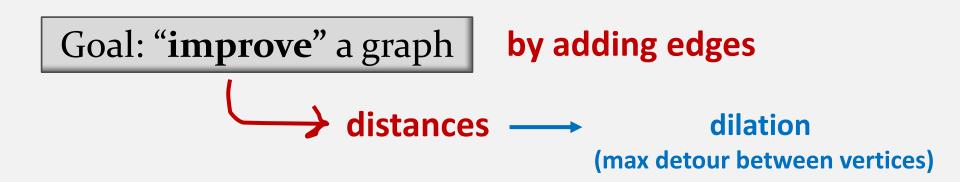
Insert k additional edges to minimize some measure on the resulting graph

Adding one edge/diameter:

Grobe et al., 2015 (trees embedded in a metric space) Wang, 2017 (paths embedded in a metric space) Biló, 2018 (trees embedded in a metric space) Wang and Zhao, 2021 (unicycle graphs and trees embedded in a metric space)

Adding k edges/diameter:

Biló et al., 2023 (trees embedded in a metric space)



Optimal k-augmentation problem:

Insert k additional edges to minimize some measure on the resulting graph

Adding one edge/diameter:

Grobe et al., 2015 (trees embedded in a metric space)
Wang, 2017 (paths embedded in a metric space)
Biló, 2018 (trees embedded in a metric space)
Wang and Zhao, 2021 (unicycle graphs and trees embedded in a metric space)

Adding k edges/diameter:

Biló et al., 2023 (trees embedded in a metric space)

Adding one edge/dilation:

diameter

(max distance between vertices)

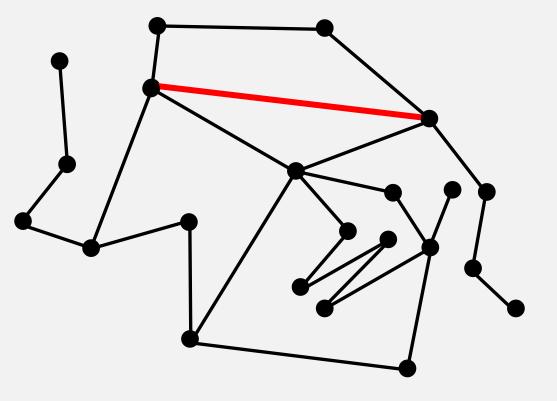
Farshi et al., 2004 plane Euclidean graphs in R^d Wulff-Nilsen, 2010 graphs embedded in a metric space

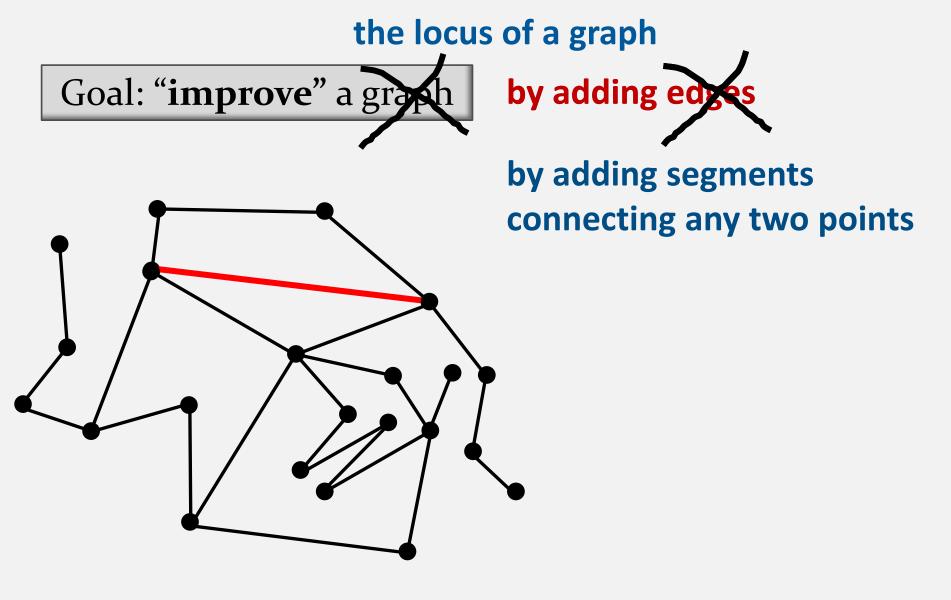
Adding k edges/dilation:

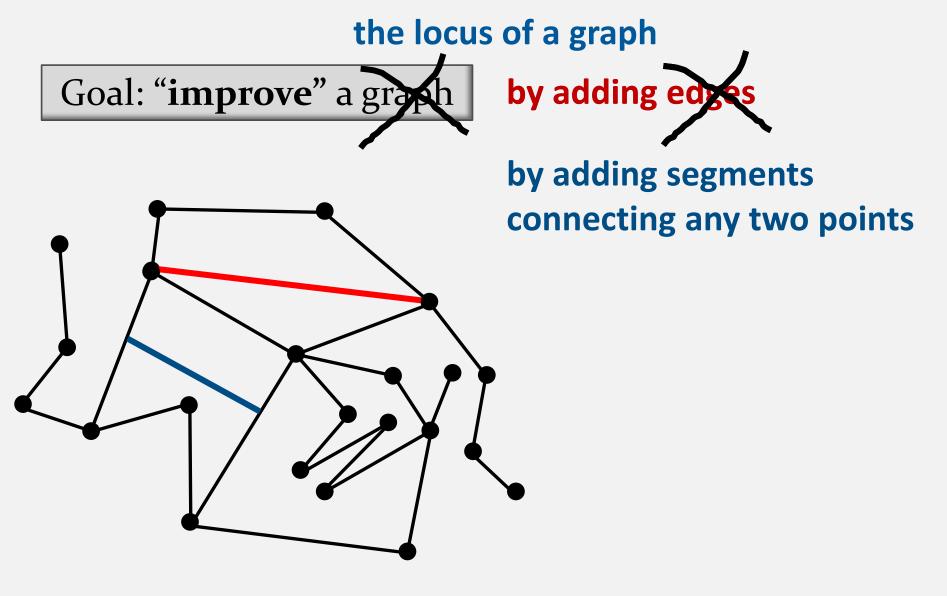
Gudmundsson and Wong, 2022 graphs embedded in a metric space

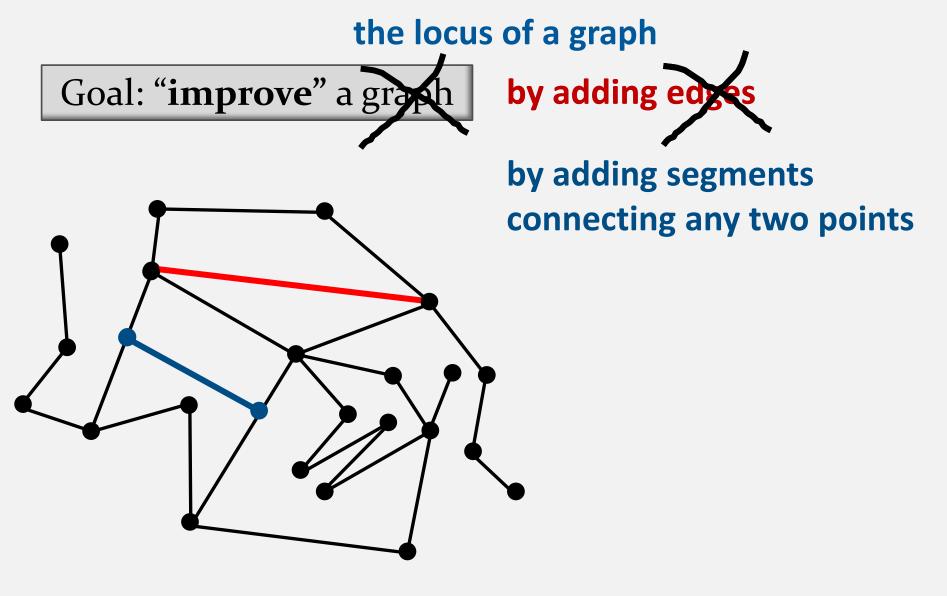
Goal: "improve" a graph

by adding edges

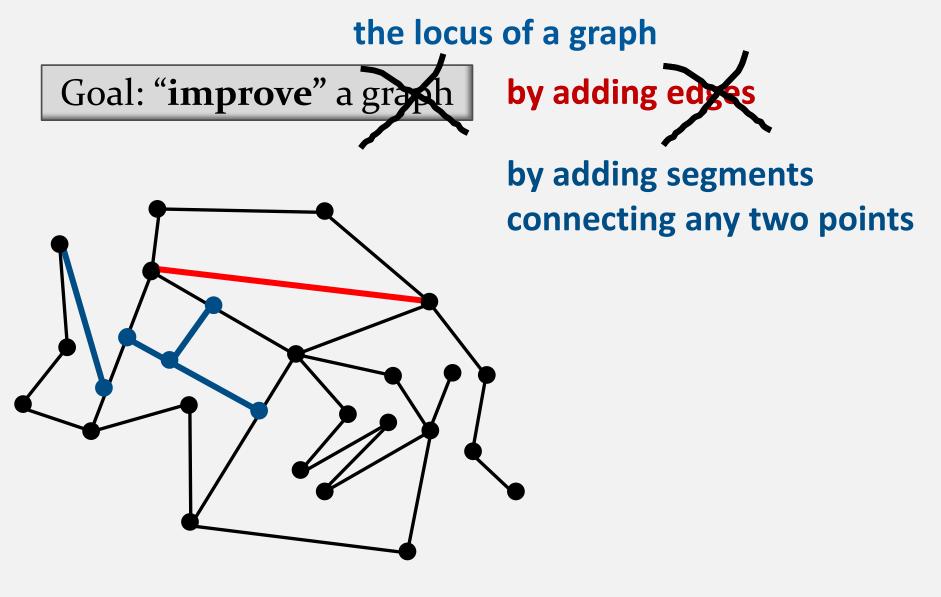












the locus of a graph

by adding segments connecting any two points

by adding edge

Reduce/minimize:

the locus of a graph

0

0

by adding segments connecting any two points

by adding edg

Reduce/minimize:

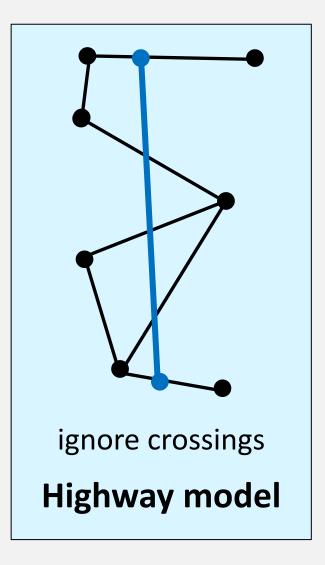
continuous diameter (max distance between any two points)

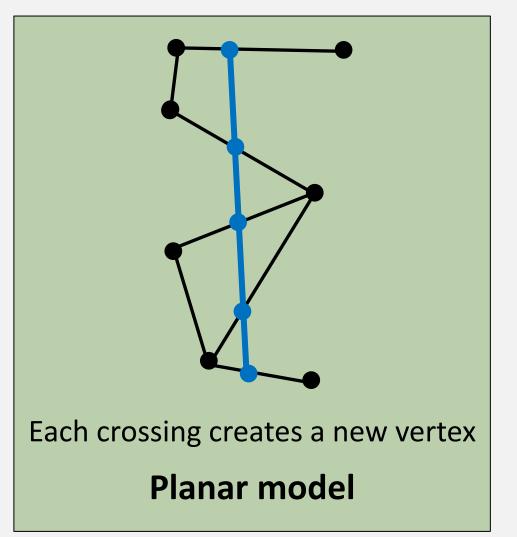
What happens

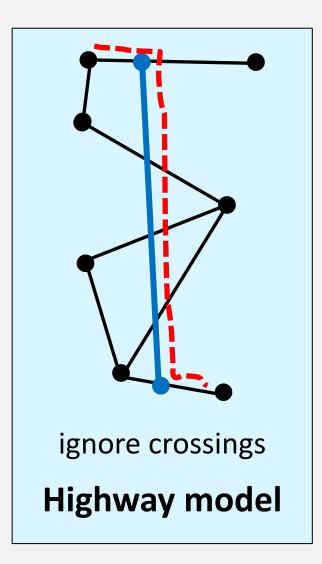
with crossings?

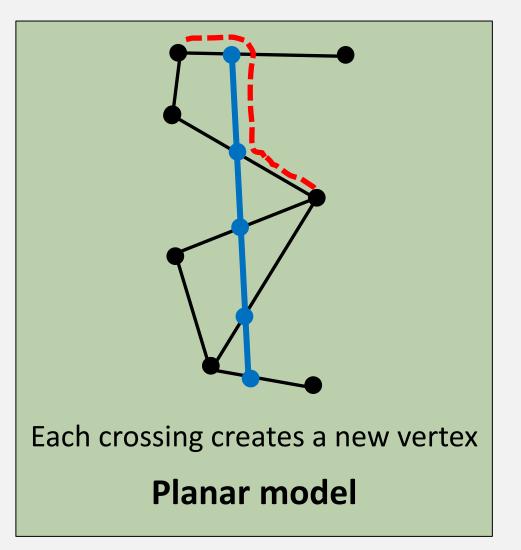
Goal: "**improve**" a graph

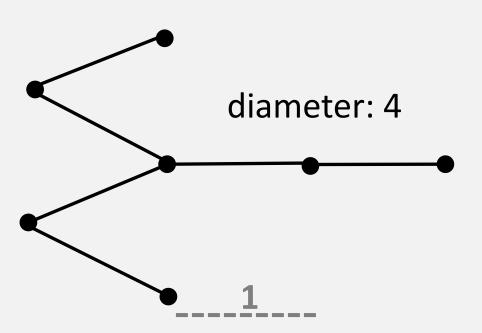
by adding segments connecting any two points

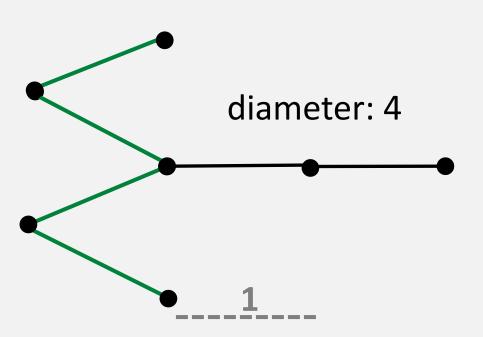


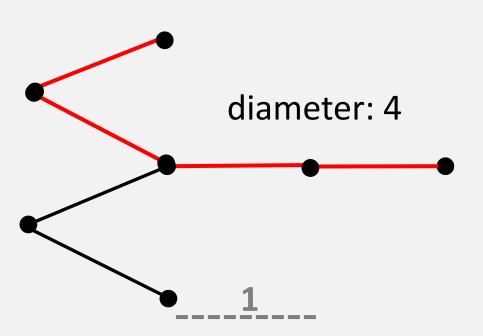


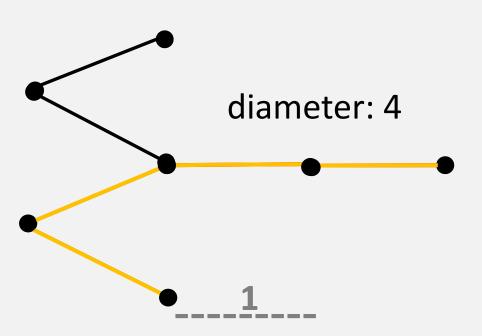


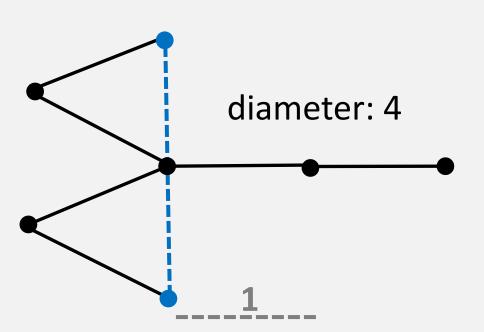


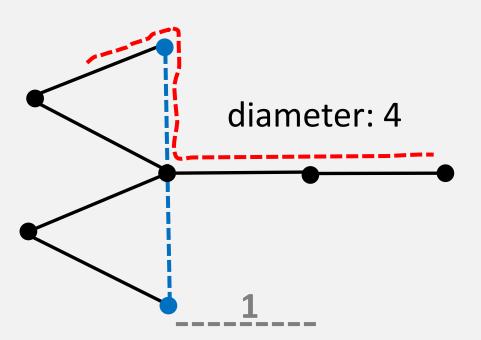


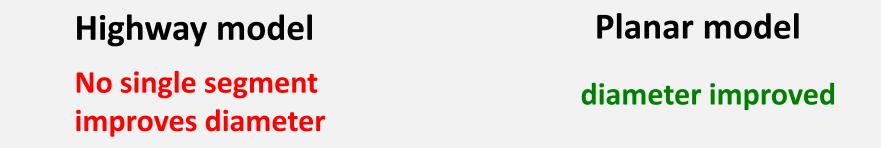


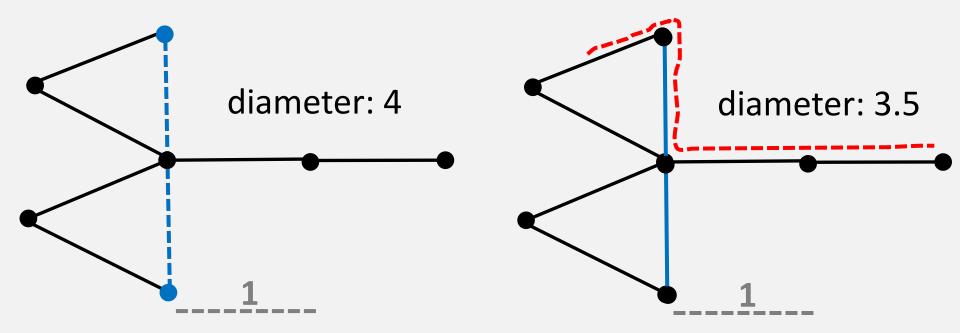






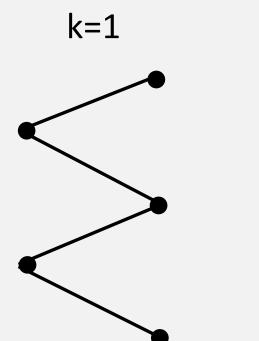






Given a graph, find k segments such that in the resulting graph the **continuous diameter** is minimum (over all posible segments)

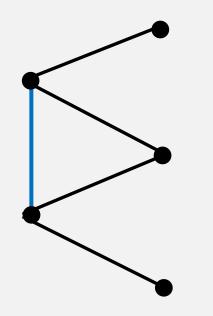
Given a graph, find k segments such that in the resulting graph the **continuous diameter** is minimum (over all posible segments)



initial diameter: 4

Given a graph, find k segments such that in the resulting graph the **continuous diameter** is minimum (over all posible segments)

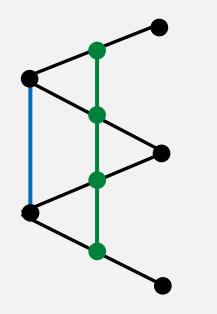
k=1



initial diameter: 4
new diameter: 3 ----- shortcut: improves

Given a graph, find k segments such that in the resulting graph the **continuous diameter** is minimum (over all posible segments)

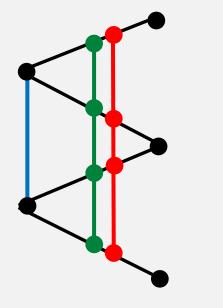
k=1



initial diameter: 4 new diameter: 3 → shortcut: improves new diameter: 2.5

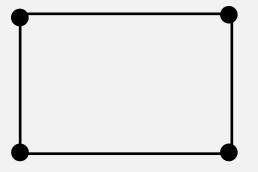
Given a graph, find k segments such that in the resulting graph the **continuous diameter** is minimum (over all posible segments)

k=1



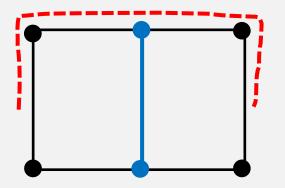
initial diameter: 4 new diameter: 3 → shortcut: improves new diameter: 2.5 new diameter: 2.3 ↓ optimal shortcut

Given a graph, find k segments such that in the resulting graph the **continuous diameter** is minimum (over all posible segments)



no single shortcut exists

Given a graph, find k segments such that in the resulting graph the **continuous diameter** is minimum (over all posible segments)



no single shortcut exists

Given a graph, find k segments such that in the resulting graph the **continuous diameter** is minimum (over all posible segments)

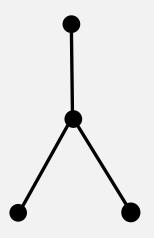


no single shortcut exists pair of shortcuts (k=2)

Our problem: find optimal shortcuts in the **planar model**

Given a graph, find k segments such that in the resulting graph the **continuous diameter** is minimum (over all posible segments)

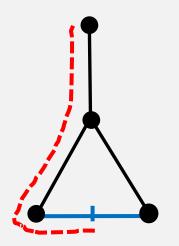
Adding a segment may worsen the diameter!



Our problem: find optimal shortcuts in the **planar model**

Given a graph, find k segments such that in the resulting graph the **continuous diameter** is minimum (over all posible segments)

Adding a segment may worsen the diameter!



Some results

Minimize: continuous diameter

Highway model

Optimal set of k **shortcuts**:

De Carufel et al. (2016): geometric paths (k=1), geometric convex cycles (k=2)

Oh and Ahn (2016): weighted trees (k=1)

De Carufel et al. (2017): geometric trees (k=1)

Bae et al. (2017): circles (k≤7)

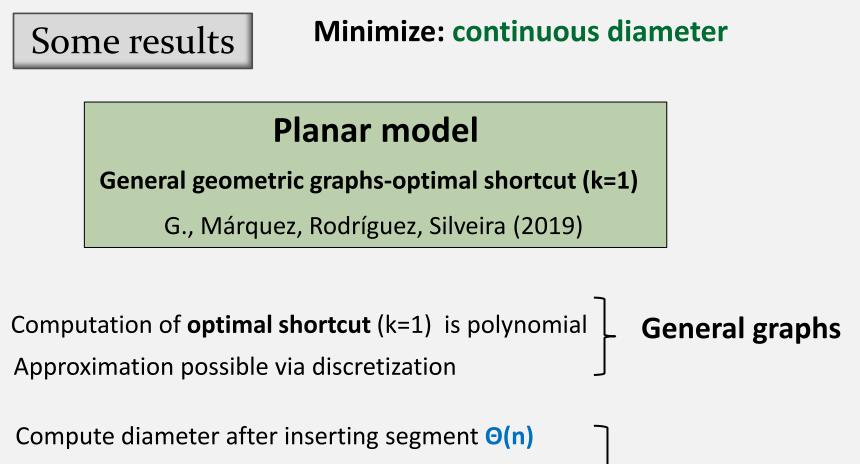
Planar model

Approximation algorithms-optimal shortcut (k=1)

Yang (2013): certain types of paths

General geometric graphs-optimal shortcut (k=1)

G., Márquez, Rodríguez, Silveira (2019)



Paths

- Compute optimal horizontal shortcut O(n²logn)
- Compute optimal simple shortcut O(n²)

Minimize: continuous diameter

Planar model

General geometric graphs-optimal shortcut (k=1)

G., Márquez, Rodríguez, Silveira (2019)

How fast can an optimal shortcut in general graphs be computed?

Minimize: continuous diameter

Planar model

General geometric graphs-optimal shortcut (k=1)

G., Márquez, Rodríguez, Silveira (2019)

How fast can an optimal shortcut in general graphs be computed? in paths? (any orientation) in trees?

Minimize: continuous diameter

Planar model

General geometric graphs-optimal shortcut (k=1)

G., Márquez, Rodríguez, Silveira (2019)

How fast can an optimal shortcut in general graphs be computed? in paths? (any orientation)

in trees?

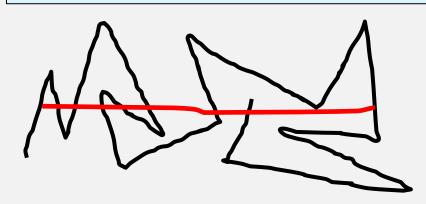
Existence of shortcuts in general geometric graphs

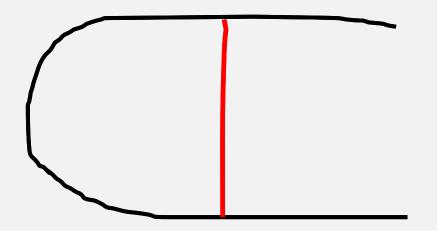
G., Klute, Márquez, Parada, Silveira (2023)

- It is 3SUM-hard to decide if a graph admits a shortcut (k=1)
- It is NP-complete and APX-hard to decide if a graph admits a set of k shortcuts

Paths: not so simple

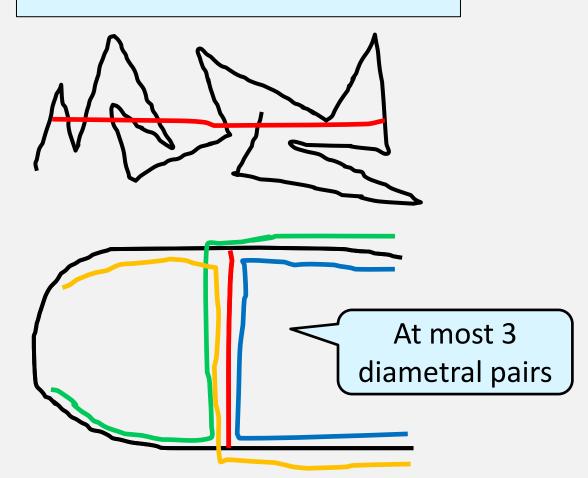
Highway model: no crossings

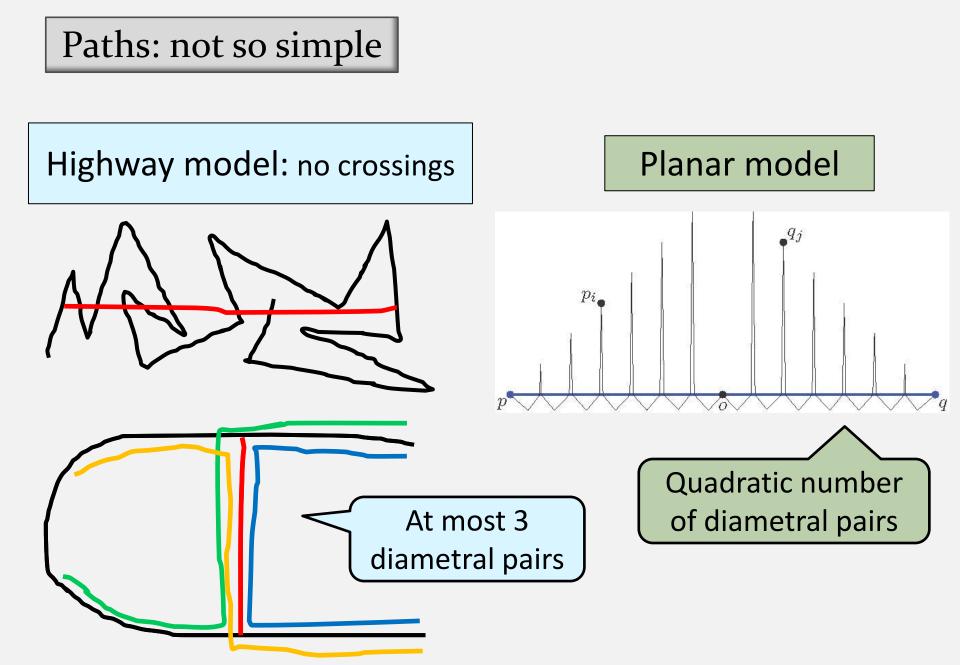




Paths: not so simple

Highway model: no crossings





Computation of the continuous diameter

(G., Márquez, Silveira, 2018 and 2023): the **continuous diameter** of a plane geometric graph and the **continuous mean distance** of a plane weighted graph can be computed in quadratic time.

Computation of the continuous diameter

(G., Márquez, Silveira, 2018 and 2023): the **continuous diameter** of a plane geometric graph and the **continuous mean distance** of a plane weighted graph can be computed in quadratic time.

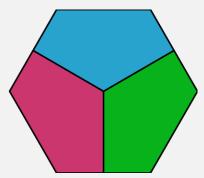
Cabello (2017): Subquadratic algorithms for the **diameter** and the **sum of pairwise distances** in planar graphs

Computation of the continuous diameter

(G., Márquez, Silveira, 2018 and 2023): the **continuous diameter** of a plane geometric graph and the **continuous mean distance** of a plane weighted graph can be computed in quadratic time.

SUBQUADRATIC??? graphs with bounded treewidth

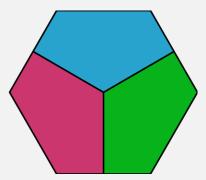
Cabello (2017): Subquadratic algorithms for the **diameter** and the **sum of pairwise distances** in planar graphs



Is it true that every set in Rⁿ can be partitioned into n + 1 closed (sub)sets of smaller diameter?

Answered in the positive for: n = 2, Borsuk (1932) n = 3, Perkal (1947) All n for smooth convex bodies, Hadwiger (1946) All n for centrally-symmetric bodies, Riesling (1971) All n for bodies of revolution, Dekster (1995)

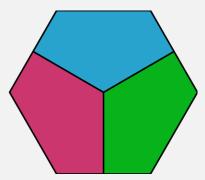
The general answer is NO, Kahn and Kalai (1993) Their construction shows that n + 1 pieces do not suffice for n > 2014



Is it true that every set in Rⁿ can be partitioned into n + 1 closed (sub)sets of smaller diameter?

Answered in the positive for: n = 2, Borsuk (1932) n = 3, Perkal (1947) All n for smooth convex bodies, Hadwiger (1946) All n for centrally-symmetric bodies, Riesling (1971) All n for bodies of revolution, Dekster (1995)

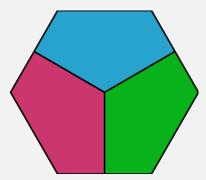
The general answer is NO, Kahn and Kalai (1993) Their construction shows that n + 1 pieces do not suffice for n > 2014



Is it true that every set in Rⁿ can be partitioned into n + 1 closed (sub)sets of smaller diameter?

Answered in the positive for: n = 2, Borsuk (1932) n = 3, Perkal (1947) All n for smooth convex bodies, Hadwiger (1946) All n for centrally-symmetric bodies, Riesling (1971) All n for bodies of revolution, Dekster (1995)

The general answer is NO, Kahn and Kalai (1993) Their construction shows that n + 1 pieces do not suffice for n > 2014



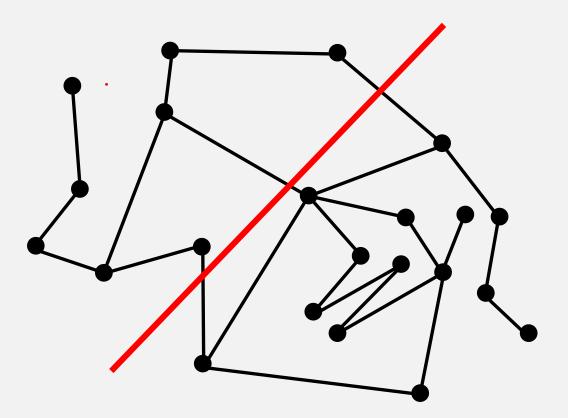
Is it true that every set in Rⁿ can be partitioned into n + 1 closed (sub)sets of smaller diameter?

Answered in the positive for: n = 2, Borsuk (1932) n = 3, Perkal (1947) All n for smooth convex bodies, Hadwiger (1946) All n for centrally-symmetric bodies, Riesling (1971) All n for bodies of revolution, Dekster (1995)

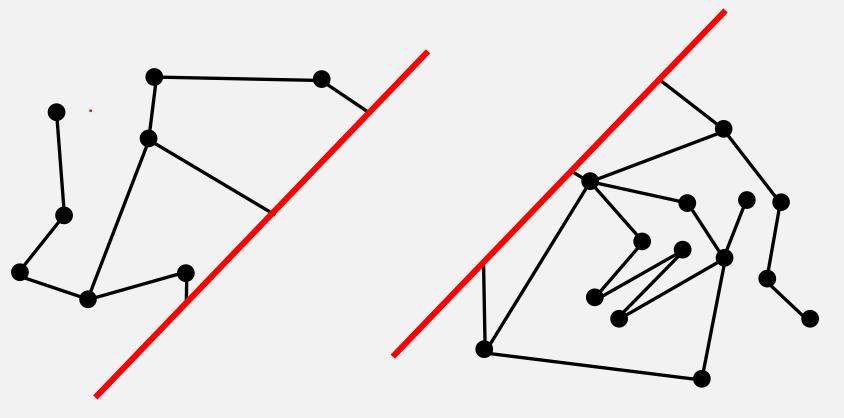
The general answer is NO, Kahn and Kalai (1993) Their construction shows that n + 1 pieces do not suffice for n > 2014

> Borsuk number: #pieces needed to obtain max{diameters} < original diameter

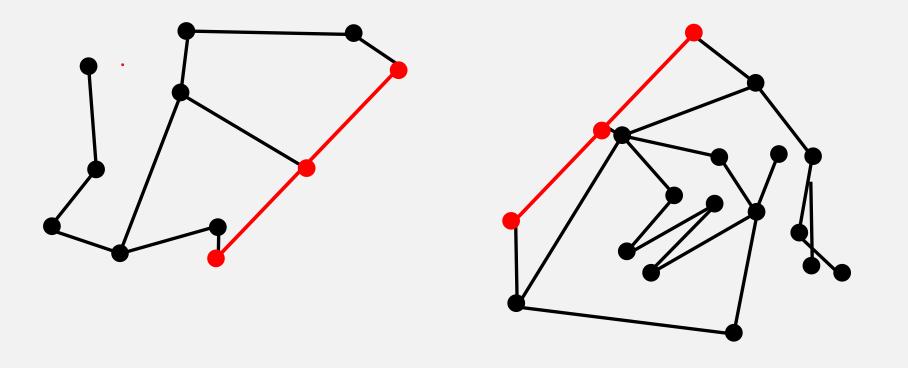
Borsuk number



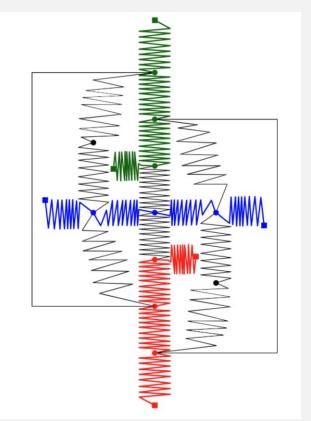
Borsuk number



Borsuk number



Borsuk number



Gracias