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GAPCOMB Workshop
Annual meeting of the group, held in July since 2019 (in Montserrat since 2021, no edition in 2020)
Devoted to problem solving since (2022) with members of the group, guests, and master students

2022 (20 participants)

2023 (26 participants)



Reading Seminar

Devoted to reviewing recent results in combinatorics

October 2022 – January 2023
Proof of the Kahn-Kalai conjecture on thresholds of monotone properties on random graphs
(by Jinyoung Park and Huy Tuan Pham)

Expositions (7) by members of the group and discussions (2) on related results

April-July 2023
An exponential improvement for diagonal Ramsey numbers 
(by Marcelo Campos, Simon Griffiths, Robert Morris, and Julian Sahasrabudhe)

Following online lectures by Rob Morris (available on YouTube)
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Research topics

• Combinatorial and geometric group theory (Cayley graphs, free groups)
• Combinatorial number theory (sum-free sets, Sidon sets)
• Enumerative combinatorics (enumeration of planar maps and graphs, graphs with 

given tree-width)
• Extremal combinatorics (graph orientations, Ramsey theory)
• Finite geometries and Coding theory (quantum error-correcting codes, MDS 

codes)
• Matroids, Polytopes and Graph polynomials (Graph polynomials, polytope 

realizability)
• Random graphs and random discrete structures (random graphs and digraphs, 

percolation, graph coloring)
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Voting systems and analytic combinatorics

Emma Caizergues, François Durand, Élie de Panafieu
Nokia Bell Labs France

Vlady Ravelomanana Université Paris Cité

Marc Noy UPC Barcelona
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Voting settings

I m = number of candidates, n = number of voters
I Each voter has strict preferences over the candidates

Elections in Australia: Instant-runoff voting

A candidate is a Condorcet winner if she/he is preferred to every
other candidate by the majority rule
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A first example

Thanks to Emma Caizergues for the pictures
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Figure: 3 candidates, 16 voters
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The Condorcet paradox
I A Condorcet winner is a candidate who wins all pairwise

comparisons
I The Condorcet paradox occurs when there is no Condorcet

winner
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Framework : General Independent Culture

A culture is a probability distribution on possible orderings
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Particular case : Impartial Culture
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Some results

Let Pn,m(CW ) be the probability that here is a Condorcet winner
(under impartial culture) with n voters and m candidates

limn→∞ Pn,2(CW ) = 1

limn→∞ Pn,3(CW ) = 3
4 + 3

2π arcsin(1/3) ≈ 0.91
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Enter generating functions

Computing the probablity that c is a Condorcet winner
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Coefficient extraction

Given A(x) =
∑
k≥0

akx
k set

[xn]A(x) = an [x≤n]A(x) = a0 + a2 + · · ·+ an = [xn]
A(x)

1− x

The probability that a is preferred to c exactly k times and
b is preferred to c exactly ` times is

[xa
kxb

`](P(xa, xb))
n

The probability that the last candidate c is a Condorcet Winner is[
xa
≤n/2xb

≤n/2
]
(P(xa, xb))

n =
[
xa

n/2xb
n/2
] (P(xa, xb))

n

(1− xa)(1− xb)
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Case m arbitrary

n voters and m candidates
x = (x1, . . . , xm−1)
The probability that candidate m is a Condorcet winner is

Pn,m(CW ) =
[
xn/2

] (P(x))n∏m−1
k=1 (1− xk)

Pn,m(CW ) =
1

(2iπ)m−1

∮
(P(x))n∏m−1

k=1 (1− xk)

dx∏m−1
k=1 x

n/2+1
k

.

=
1

(2iπ)m−1

∮
e
n

(
log(P(x)− 1

2

m−1∑
k=1

xk

)
+

m−1∑
k=1

1
1−xk dx

x
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Saddle point method

In =
∫
M⊆Cd A(x)enφ(x)dx , A and φ analytic

If φ has a unique critical point 0 onM then

In ∼
n→∞

(2πn)−d/2A(0)enφ(0) det(H(0))−1/2

Pn,m(CW ) =
1

(2iπ)m−1

∮
e
n

(
log(P(x)− 1

2

m−1∑
k=1

log(xk )

)
+

m−1∑
k=1

log( 1
1−xk

) dx
x
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One of our contributions: subcritical case

I Pn,m(CW ) = probability last candidate is a Condorcet winner

I φ(x) = log(P(x))− 1
2

m−1∑
k=1

log(xk)

I ζ = solution to (∂kφ(x) = 0)k

If ζ = (ζ1, . . . , ζm−1) with ζj < 1 for all j then

Pn,m(CW ) ∼
n→∞

1√
(2πn)m−1

m−1∏
k=1

ζ
−n/2
k

1− ζk
enφ(1)√

det(Hφ(1))
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The arc-sinus formula revisited

3 candidates and 2n + 1 voters, impartial culture

P(3,∞) = 3[xnyn]
1
6(2+ x + y + 2xy)2n+1

(1− x)(1− y)

M =

(
1/4 1/12
1/12 1/4

)

P(3,∞) = 3
(

i

2π

)2 ∫
(i−∞,i+∞)2

e
− 1

2 (x y)M

x
y


dxdy

xy



14/16

P(3,∞) = 3
(

i

2π

)2 ∫
(i−∞,i+∞)2

e
− 1

2 (x y)M

x
y


dxdy

xy

= − 3
4π2

∫
(i−∞,i+∞)2

∑
k≥0

(−1/12)k

k!
(xy)k−1e−x

2/8−y2/8dxdy

= − 3
4π2

∑
k≥0

(−1/12)k

k!

(∫ i+∞

i−∞
xk−1e−x

2/8dx

)2

=
3
4
+

3
2π

∑
j≥0

(1/3)2j+1

(2j + 1)!

(
(2j)!
2j j!

)2

P(3,∞) =
3
4
+

3
2π

arcsin

(
1
3

)
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Musée Carnavalet Paris W. Gehrlein (U. Delaware) 2006
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